测量不确定度评定方法新进展:从统计方法到神经网络间接评定法
DOI:
CSTR:
作者:
作者单位:

合肥工业大学仪器科学与光电工程学院合肥230002

作者简介:

通讯作者:

中图分类号:

TH89TB9

基金项目:

国家自然科学基金(52575620)、国家重点研发计划(2023YFF0719700)项目资助


Advances in measurement uncertainty evaluation: From statistical methods to neural network indirect evaluation
Author:
Affiliation:

School of Instrument Science and Opto-electronics Engineering, Hefei University of Technology, Hefei 230002, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着现代工业和科学研究对测量精度的要求日益提高,测量不确定度的评定成为确保产品质量和优化生产流程的重要环节。传统的测量不确定度评定方法在静态、线性系统中应用广泛,但在面对高维、非线性或动态系统时逐渐暴露出局限性。近年来,非统计方法为复杂系统的不确定度评定提供了有效的补充,特别是神经网络技术,凭借其强大的数据处理能力和非线性建模特性,已成为不确定度评估的重要工具。首先,系统回顾了统计方法(测量不确定度表述指南及其蒙特卡洛方法)与非统计方法(如贝叶斯推断、灰色评定、模糊评定及最大熵评定)在测量不确定度评定中的基本原理、优势、局限性及典型应用场景。其次,进一步探讨了各类方法与机器学习相结合的最新研究进展与发展趋势。特别关注新兴的基于神经网络的不确定度间接评定方法,包括确定性模型、贝叶斯神经网络及集成学习方法,分析了不同建模与评估策略在复杂非线性系统中的应用潜力与局限性。最后,对现有测量不确定度评定方法的适用场景进行了归纳与比较,并展望了未来的发展方向。在保证评定效率与可靠性的前提下,不同方法的融合有望进一步提升复杂测量系统的建模能力与不确定度评估的可信度,降低对大量测量数据的依赖,以满足现代工业与科学研究中日益复杂的测量需求。

    Abstract:

    As the demand for measurement accuracy intensifies in modern industry and scientific research, the evaluation of measurement uncertainty has become a crucial component in ensuring product quality and optimizing production processes. Traditional methods for assessing measurement uncertainty are widely applied in static and linear systems but have shown limitations when dealing with high-dimensional, nonlinear, or dynamic systems. In recent years, non-statistical methods have effectively complemented uncertainty evaluation for complex systems. In particular, neural network techniques, with their powerful data processing capabilities and nonlinear modeling capabilities, have become essential tools for uncertainty evaluation. This study provides a comprehensive review of statistical methods, including the Guide to the Expression of Uncertainty in Measurement and the Monte Carlo method, as well as non-statistical approaches such as Bayesian inference, grey evaluation, fuzzy evaluation, and maximum entropy evaluation. The fundamental principles, advantages, limitations, and typical application scenarios of each method are systematically analyzed. In addition, the recent trend of integrating these uncertainty evaluation methods with machine learning is discussed. Particular attention is given to emerging neural network-based indirect evaluation methods, including deterministic models, Bayesian neural networks, and ensemble learning frameworks. The modeling and evaluation strategies of these approaches are examined in the context of complex nonlinear systems, highlighting their potential and current limitations. Finally, the applicability of various uncertainty evaluation methods is summarized, and future research directions are outlined. The study suggests that the integration of multiple evaluation paradigms can enhance the modeling capability and reliability of uncertainty estimation in complex measurement systems, reduce dependence on large data samples, and better address the increasingly intricate measurement requirements in modern industry and scientific research.

    参考文献
    相似文献
    引证文献
引用本文

陈文浩,丁垠冶,宋仁成,张进,夏豪杰.测量不确定度评定方法新进展:从统计方法到神经网络间接评定法[J].仪器仪表学报,2025,46(11):1-19

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-09
  • 出版日期:
文章二维码