基于星光矢量的鱼眼相机在轨标定方法
DOI:
CSTR:
作者:
作者单位:

1.北京信息科技大学仪器科学与光电工程学院北京100192; 2.中国空间技术研究院遥感卫星总体部北京100094

作者简介:

通讯作者:

中图分类号:

TH89

基金项目:

国家重点研发计划青年科学家项目(2023YFB3905200)资助


Fisheye camera on-orbit calibration method based on starlight vectors
Author:
Affiliation:

1.School of Instrument Science and Optoelectronics Engineering, Beijing Information Science & Technology University, Beijing 100192, China; 2.Institute of Remote Sensing Satellite, China Academy of Space Technology, Beijing 100094, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对在轨摄影测量中近距离超大尺寸测量以及测量系统内部参数发生改变等难题,提出了一种基于星光矢量的鱼眼相机在轨标定新方法。首先,基于状态标识法提出了一种改进型的星图识别算法,该算法对图像失真更不敏感,同时通过四星三角联合判决法降低了鱼眼星图识别结果的冗余度,从而提高识别速度。其次,针对在轨环境下鱼眼相机内部参数发生变化,导致星图识别率急剧下降,无法满足相机标定所需全场数据的问题,提出了一种联合星图识别和区域迭代扩展策略的鱼眼相机自标定光束平差算法。该算法通过逐步扩展视场区域,并结合区域识别结果迭代优化相机内外参数,逐步提升全场识别率,直至满足标定要求。最后,通过鱼眼相机采集246张天区图像组成相机多姿态星图合集进行实验验证。地面采集星图实测实验表明,在识别阈值较大时(0.25°),改进的星图识别算法所用识别时间仅为状态标识法的36.91%,识别效率得到显著提高。同时在相机内部参数发生较大变化时(主距变化0.15 mm),提出的算法可实现星点的全场识别,此时鱼眼星图星点识别率可达98.6%,满足相机标定所需全场数据的需求;相机标定后的星点像面坐标的重投影均方根误差为1/5 pixels。实验数据表明,所提算法可实现测量系统参数的高精度自校准,为视觉测量在轨应用中面临的系统参数标定难题提供方案和参考数据。

    Abstract:

    To address the challenges of close-range, ultra-large-scale measurement in on-orbit photogrammetry and variations in the internal parameters of the measurement system, a novel fisheye camera on-orbit calibration method based on starlight vectors is proposed. First, an improved star pattern recognition algorithm is developed based on the state identification method. The algorithm is less sensitive to image distortion and effectively reduces redundancy in fisheye star pattern recognition using a four-star triangle joint decision method, thereby improving recognition speed. Second, to address the loss of recognition accuracy and the limited acquisition of full-field data for calibration caused by variations in the internal parameters of the on-orbit fisheye camera, a self-calibration bundle adjustment method is developed. This method integrates star-pattern recognition with a regional iterative expansion strategy. The algorithm progressively expands the field-of-view region and iteratively optimizes the camera′s internal and external parameters by incorporating recognition results from each region, gradually improving the overall recognition rate until the calibration requirements are satisfied. Finally, experimental validation is carried out using a multi-attitude star pattern dataset constructed from 246 fisheye images of the celestial sphere. Ground-based experiments show that when the recognition threshold is relatively large (0.25°), the improved star pattern recognition algorithm requires only 36.91% of the time consumed by the state identification method, demonstrating a significant improvement in efficiency. Moreover, when the internal parameters of the camera change considerably (principal distance variation of 0.15 mm), the proposed algorithm achieves full-field star recognition, with the recognition rate reaching 98.6%, thereby satisfying the requirement for full-field data in camera calibration. After calibration, the root mean square error of the reprojected star point image coordinates is 1/5 pixels. The experimental results indicate that the proposed algorithm enables high-precision self-calibration of measurement system parameters, providing an effective solution and reference data for addressing the calibration challenges of system parameters in on-orbit visual measurement applications.

    参考文献
    相似文献
    引证文献
引用本文

廖平,孙鹏,董明利,庄炜,余快.基于星光矢量的鱼眼相机在轨标定方法[J].仪器仪表学报,2025,46(11):241-252

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-09
  • 出版日期:
文章二维码