基于靶向阵元智能分划的超声全聚焦成像研究
DOI:
CSTR:
作者:
作者单位:

南昌航空大学仪器科学与光电工程学院南昌330063

作者简介:

通讯作者:

中图分类号:

TH89

基金项目:

国家自然科学基金(52075236)、南昌航空大学研究生创新基金项目(YC2024-047)资助


Study on ultrasonic total focus method-intelligent partitioning based on target elements
Author:
Affiliation:

School of Instrument Science and Opto-electronics Engineering, Nanchang Hangkong University, Nanchang 330063, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统超声全聚焦成像技术(TFM)计算复杂度高、实时性不足的问题,提出了基于靶向阵元智能分划的超声全聚焦成像方法(TFM-IPE)。基于阵元中心分划的靶向全聚焦超声成像方法通过分析主阵元收发信号预定位可疑缺陷区域,进而对全矩阵数据进行方阵,横向及纵向分划处理,结合相位迁移算法实现高效聚焦成像。对两块含不同埋深分层缺陷的碳纤维复合材料试块进行超声全聚焦检测采集全矩阵数据,分别对全矩阵数据和分划后的子矩阵数据进行成像运算,并对比全矩阵数据成像效果和3种不同的分划方法得到的子矩阵成像效果,实验表明:相较于传统利用全矩阵数据的全聚焦成像,基于靶向阵元中心分划的靶向全聚焦超声成像方法可以显著减少数据矩阵运算量进而提高成像效率。3种分划方式中纵向分划得到的子矩阵成像图像对浅层、中层和深层3个不同埋深缺陷进行检测时,在保证成像分辨率和旁瓣抑制效果的基础上,对缺陷的水平位置预测相对误差要比方阵分划和横向分划分别降低了7.995 2%和7.633 4%、2.603 0%和2.447 9%、0.595 2%和0.496 5%。基于靶向阵元中心分划的靶向全聚焦超声成像方法通过数据分划策略有效平衡了成像效率与质量,为航空航天、核电等领域的自动化超声无损检测提供了高效解决方案。

    Abstract:

    Total Focusing Method (TFM) for ultrasonic imaging, a novel ultrasonic total focus method-intelligent partitioning based on target elements (TFM-IPTE) is proposed. The TFM-IPTE first pre-locates suspected defect areas by analyzing the transmitted and received signals of the main elements. Subsequently, square, horizontal, and vertical division strategies are applied to the full matrix capture (FMC) data, and efficient focused imaging is achieved by combining these divided submatrices with a phase shift algorithm. FMC data were collected through ultrasonic total focusing detection on two carbon fiber composite test blocks containing subsurface layered defects with different depths. Imaging calculations were conducted on the full matrix data and the divided submatrix data respectively, and the imaging effects of the full matrix data were compared with those of the submatrix data obtained by three different division methods. Experimental results show that compared with the traditional total focusing imaging using full matrix data, the TFM-IPTE significantly reduces the computation load and thereby improves imaging efficiency. Among the three division methods, vertical division provides superior performance when detecting shallow, middle, and deep defects. While maintaining imaging resolution and side lobe suppression effect, the relative error of horizontal position prediction for defects are reduced by 7.995 2% and 7.633 4%, 2.603 0% and 2.447 9%, 0.595 2% and 0.496 5% compared with square division and horizontal division respectively. The TFM-IPTE effectively balances imaging efficiency and quality through the data division strategy, providing an efficient solution for automated ultrasonic non-destructive testing (NDT) in fields such as aerospace and nuclear power.

    参考文献
    相似文献
    引证文献
引用本文

舒意峰,龙盛蓉,谭小康,李志农.基于靶向阵元智能分划的超声全聚焦成像研究[J].仪器仪表学报,2025,46(11):145-157

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-09
  • 出版日期:
文章二维码