高鲁棒性空间相机自动调焦算法设计与试验
DOI:
CSTR:
作者:
作者单位:

1.中国科学院长春光学精密机械与物理研究所长春130033; 2.中国科学院大学北京100049; 3.上海卫星工程研究所上海201100

作者简介:

通讯作者:

中图分类号:

TH74V19

基金项目:


Design and experiment of automatic focusing algorithm for high robustness space camera
Author:
Affiliation:

1.Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; 2.University of Chinese Academy of Sciences, Beijing 100049, China; 3.Shanghai Institute of Satellite Engineering, Shanghai 201100, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高对地观测卫星在轨调焦的效率和精度,提出了一种基于多个星点图像定量评估相机离焦状态,计算最佳探测器位置的方法。首先,介绍了自动调焦算法的工作流程,详细描述了星点图像预处理,图像质心和空间相位差(SPD)的计算方法,在SPD的基础上,重建点扩散函数(PSF)并根据离散PSF拟合高斯曲线计算标准差,将标准差和探测器位置拟合为调焦曲线,曲线最低点即为自动调焦算法计算出的最佳探测器位置。为了说明所提算法的有效性,简要介绍了空间域、频率域、统计学以及基于特征的图像清晰度评价函数,将其作为对比算法。最后,搭建了试验平台,测试所提算法的定焦精度以及噪声鲁棒性,并与其他清晰度评价函数进行了对比。试验结果表明:所提算法计算最佳探测器位置,最小误差为-0.001 3 mm,小于1/6半焦深,优于对比算法;当图像信噪比≥10 dB,定焦误差的绝对值<0.002 8 mm,在1/6半焦深范围以内,调焦曲线的拟合优度>0.85,噪声鲁棒性优于对比算法。所提算法在不同探测器位置上获取多个星点图像,通过星点图像定量评估相机的离焦状态,拟合的调焦曲线能够正确反应相机离焦状态与离焦量的关系,最佳探测器位置的计算精度能够满足空间相机对调焦精度的要求,具有较强的噪声鲁棒性。

    Abstract:

    In order to improve the efficiency and accuracy of on-orbit focusing of earth observation satellites, this paper proposes a method to quantitatively evaluate the defocusing state of the camera based on multiple star images and calculate the optimal detector position. First, the workflow of the auto-focusing algorithm is introduced. The calculation methods of star image preprocessing, image centroid and spatial phase difference (SPD) are described in detail. On the basis of SPD, the point spread function (PSF) is reconstructed and the standard deviation is calculated according to the discrete PSF fitting Gaussian curve. The standard deviation and the detector position are fitted as the focusing curve, and the lowest point of the curve is the optimal detector position calculated by the auto-focusing algorithm. Then, in order to illustrate the effectiveness of the algorithm proposed in this paper, the spatial domain, frequency domain, statistics and feature-based image sharpness evaluation function are briefly introduced as a comparison algorithm. Finally, a test platform is built to test the focusing accuracy and noise robustness of the proposed algorithm, and compared with other clarity evaluation functions. Experimental results indicate that the proposed algorithm achieves with a minimum error of -0.001 3 mm for the optimal detector position calculation, less than 1/6 semi-focus depth, better than the comparison algorithm ; when the image signal-to-noise ratio is not less than 10 dB, the absolute value of the focusing error is less than 0.002 8 mm, and the focusing curve fitting goodness is greater than 0.85 within the range of 1/6 semi-focus depth, and the noise robustness is better than the comparison algorithm. The proposed algorithm acquires multiple star images at different detector positions, quantitatively evaluates the camera′s defocus state through the star images, and the fitted focusing curve can correctly reflect the relationship between the camera′s defocus state and the amount of defocus. The calculation accuracy at the optimal detector position can meet the focusing accuracy requirements of space cameras and has strong noise robustness.

    参考文献
    相似文献
    引证文献
引用本文

彭越洋,傅紫源,贺玉坤,陈长征,沙巍.高鲁棒性空间相机自动调焦算法设计与试验[J].仪器仪表学报,2025,46(11):82-91

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-09
  • 出版日期:
文章二维码