下肢外骨骼电机超调预测-优化双阶段补偿控制策略
DOI:
CSTR:
作者:
作者单位:

1.重庆大学自动化学院重庆400044; 2.深圳大学人工智能学院深圳518055

作者简介:

通讯作者:

中图分类号:

TP242TH89

基金项目:

国家重点研发计划(2023YFB4704003)、国家自然科学基金青年科学基金(62403453)、广东省基础与应用基础研究基金(2025A1515011973)项目资助


Motor overshoot prediction and optimization of a two-stage compensation strategy for lower limb exoskeletons
Author:
Affiliation:

1.School of Automation, Chongqing University, Chongqing 400044, China; 2.School of Artificial Intelligence, Shenzhen University, Shenzhen 518055, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    下肢外骨骼技术能够辅助增强人体力量,应用广泛。然而,外骨骼电机因电磁惯性和机械负载导致的动态非线性,因超调引发人机协同运动响应失配,增加生物力学损伤风险。针对外骨骼电机在人体行走抬腿阶段的惯性超调问题,提出了一种融合逆向系统模型预测与前向模型优化的双阶段协同超调量预测优化策略。通过构建卷积神经网络-长短期记忆网络-注意力机制(CNN-LSTM-Attention)的逆向系统模型,实时接收电机目标输出,有效捕捉多变量时间序列数据,快速生成外骨骼电机初始输入指令;构建金字塔特征融合-卷积神经网络-双向长短期记忆网络-Transformer(Pyramid-CLT)的前向优化模型,采用门控机制和金字塔形全连接层(Pyramid)实现多尺度特征整合,预测输出与目标输出的均方误差作为目标函数,运用粒子群优化算法(PSO)对高均方误差的样本进行迭代优化,生成精确的电机控制指令,实现电机超调补偿控制,并通过下肢刚性外骨骼系统采集电机实际运行数据进行实验验证。结果表明,预测优化策略能够根据人体运动轨迹精准生成外骨骼电机输入指令,模型相关指数(R2)为0.985,均方根误差(RMSE)和平均绝对误差(MAE)分别为0.537和0.442;与单一模型算法和其他预测算法对比,通过实时动态预测并修正超调量,使电机输出紧密贴合人体运动轨迹,有效提升人机协同性,为下肢外骨骼的精准控制提供了新的方法。

    Abstract:

    Lower limb exoskeleton technology can assist in enhancing human strength and has a wide range of applications. However, exoskeleton motors exhibit dynamic nonlinearity due to electromagnetic inertia and mechanical loads, leading to overshoot that causes mismatches in human-machine collaborative motion responses and increases the risk of biomechanical injury. To address the inertial overshoot issue in exoskeleton motors during the leg-lifting phase of human walking, a two-stage collaborative overshoot prediction and optimization strategy is proposed, integrating inverse system model prediction with forward model optimization. By constructing a reverse system model based on a CNN-LSTM-Attention architecture, the system receives real-time motor target outputs, effectively captures multivariate time-series patterns, and rapidly generates the initial input commands for the exoskeleton motor. A forward optimization model based on a pyramid feature fusion-CNN-bi-LSTM-Transformer (Pyramid-CLT) architecture is constructed. The model employs a gating mechanism together with pyramid-shaped fully connected layers to achieve multi-scale feature integration. The mean squared error between the predicted output and the target output serves as the objective function. To further improve the prediction accuracy, a particle swarm optimization (PSO) algorithm is applied to iteratively refine samples with high mean square error, enabling the generation of precise motor control commands for overshoot compensation. Experimental that the prediction optimization strategy can precisely generate exoskeleton motor input commands based on human movement trajectories, achieving a model correlation coefficient (R2) of 0.985, root mean square error (RMSE) of 0.537, and mean absolute error (MAE) of 0.442; Compared with single-model algorithms and other prediction algorithms, the proposed method achieves real-time dynamic prediction and correction of overshoot, enabling motor output to closely align with human movement trajectories, thereby effectively enhancing human-machine synergy and providing a new method for precise control of lower-limb exoskeletons.

    参考文献
    相似文献
    引证文献
引用本文

石欣,唐佳,范智瑞,杨子祥,秦鹏杰.下肢外骨骼电机超调预测-优化双阶段补偿控制策略[J].仪器仪表学报,2025,46(11):158-172

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-09
  • 出版日期:
文章二维码