基于动态贝叶斯网络的一维工作台定位精度损失预测
DOI:
CSTR:
作者:
作者单位:

安徽理工大学机电工程学院淮南232000

作者简介:

通讯作者:

中图分类号:

TH161+.5

基金项目:

安徽省高等学校科学研究项目(2022AH050805)、安徽理工大学引进人才科研启动基金(2021yjrc32)项目资助


Prediction of one-dimensional workbench localization accuracy loss based on dynamic Bayesian network
Author:
Affiliation:

School of Mechatronics Engineering, Anhui University of Science and Technology, Huainan 232000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    数控机床核心零部件工作台随着使用时间的增加会出现磨损、失效现象,造成加工精度降低。为了精确预测工作台在各影响因素下随着使用时间的动态特征带来的定位精度损失,以一维工作台为研究对象,提出了基于动态贝叶斯网络的一维工作台定位精度损失建模预测方法。通过实测误差数据和预测数据对比分析,验证所提方法的有效性。首先,根据一维工作台的结构分析确定误差源组成,根据建立的一维工作台在复杂工况下的精度损失理论模型,得到负载、速度、温度、时间为工作台定位误差主要影响因素。其次,搭建实验装置测得不同影响因素下的定位误差数据,根据云图结果验证理论建模的正确性。接着,引入时间维度构建多因素影响下一维工作台定位误差动态贝叶斯网络预测模型,依次确定动态贝叶斯网络的基本结构、网络节点和变量域范围。随后,采用数理统计和EM结构算法对参数学习,得到根节点的先验概率分布和非根节点的条件概率。最后,以前后定位误差为例,利用动态贝叶斯网络聚类推理算法实现工作台定位误差的预测,同时对比相同条件下的实测误差。结果表明,工作台前后定位误差预测与实测曲线总体均随时间的增加而增大,两者变化趋势相似,最大绝对误差为1.63 μm,最大相对误差为13.471%,验证了预测模型的有效性。

    Abstract:

    The worktables of core components in CNC machine may experience wear and failure over extended periods of use, leading to reduced machining accuracy. To accurately predict positioning accuracy loss in workbenches under various factors as a function of usage time, this study proposes a modeling and prediction method for one-dimensional workbench positioning accuracy loss based on dynamic Bayesian network. The effectiveness of the proposed method is validated through comparative analysis of measured error data and predicted data. First, the composition of error sources is determined based on the structural analysis of the one-dimensional workbench. According to the established theoretical model of accuracy loss under complex operating conditions for the one-dimensional workbench, load, speed, temperature, and time are identified as the primary factors influencing the positioning error of the workbench. Second, experimental platform was constructed to measure positioning error data under various influencing factors. The validity of the theoretical model was verified based on cloud map results. Next, we incorporate the time dimension to construct a dynamic Bayesian network prediction model for workbench positioning errors under multi-factor influences. We sequentially determine the basic structure of the dynamic Bayesian network, its network nodes, and the ranges of variable domains. Subsequently, we employ mathematical statistics and the EM algorithm for parameter learning, obtaining the prior probability distribution for root nodes and the conditional probability for non-root nodes. Finally, using forward and backward positioning error as an example, the dynamic Bayesian network clustering inference algorithm was employed to predict workbench positioning error. Simultaneously, the predicted error was compared with the measured error under identical conditions. Results indicate that both the predicted forward and backward positioning error curve and the measured error curve generally increase over time, exhibiting similar trends. The maximum absolute error reached 1.63 μm, while the maximum relative error was 13.471%. This validates the effectiveness of the prediction model.

    参考文献
    相似文献
    引证文献
引用本文

李莉,刘柄瑶,杨洪涛,秦鹏飞,王申奥.基于动态贝叶斯网络的一维工作台定位精度损失预测[J].仪器仪表学报,2025,46(11):28-38

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-09
  • 出版日期:
文章二维码