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Improving autoencoder-based unsupervised damage detection in uncontrolled
structural health monitoring under noisy conditions
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Abstract ; Structural health monitoring is widely utilized in outdoor environments, especially under harsh conditions, which can
introduce noise into the monitoring system. Therefore, designing an effective denoising strategy to enhance the performance of
guided wave damage detection in noisy environments is crucial. This paper introduces a local temporal principal component
analysis (PCA) reconstruction approach for denoising guided waves prior to implementing unsupervised damage detection,
achieved through novel autoencoder-based reconstruction. Experimental results demonstrate that the proposed denoising method
significantly enhances damage detection performance when guided waves are contaminated by noise, with SNR values ranging
from 10 to =5 dB. Following the implementation of the proposed denoising approach, the AUC score can elevate from 0. 65 to
0. 96 when dealing with guided waves corrputed by noise at a level of =5 dB. Additionally, the paper provides guidance on
selecting the appropriate number of components used in the denoising PCA reconstruction, aiding in the optimization of the
damage detection in noisy conditions.
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0 Introduction

A large scale of civil infrastructure and mechanical
structures, face various external forces over their service life.
Given these risks and fueled by the progress in sensing
technology, there’ s a growing focus on utilizing structural
health monitoring ( SHM ) technique for proactively detect
damage and avert disasters in large-scale infrastructures'' .
Within the realm of SHM approaches, ultrasonic guided
waves have been extensively utilized due to a series of
advantages, including travel long distances without
significant loss of energy enabling the assessment of large
structures through a single point of access, and the
exceptional sensitivity of guided waves to irregularities like

3]

cracks'”’ | and delamination’’ allowing for the prompt

)
identification of potential defects, preventing them from
escalating into more critical problems'*’.

However, an inherent challenge in utilizing guided
waves for structural health monitoring is the intricate nature
of the collected signal®’. Typically, these guided waves are
dispersive , meaning their waveform evolves as they travel >’ |
and encompass multiple modes and reflections, complicating
the task of discerning minor reflections triggered by
variations, such as defects, in the complex guided wave
signals'® . In addition, ultrasonic guided waves are also
easily distorted by environmental and operational condition
(EOC) variations'®’ .

of guided waves, possibly obscuring actual damage or

Such variations can modify the travel

resulting in erroneous indications of damage'” .

To adapt guided wave-based damage detection to
complex variations in environmental and operating conditions,
researchers have explored unsupervised techniques for
damage detection that do not rely on prior measurements from
damaged structures. Motivated by the impressive advance-
ments in deep learning, a novel strategy that leverages an
reconstruction method for

autoencoder-based detecting

damage is proposed. Traditionally, anomaly detection
methods based autoencoders involve training the network to
learn normal behavior, such as the patterns of guided waves
under intact conditions. Subsequently, anomaly detection is
executed by assessing whether the test data can be accurately

reconstructed by the trained model or not'™®”'. Consequently,

E R irEFR 5 KA. 460. 40

guided waves that cannot be effectively reconstructed by the
trained autoencoder model are identified as anomaly data,
indicating potential damage or irregular environmental

Abbassi

employed guided waves from a pristine structure

variations. In guided wave-based monitoring,

et al. [""
under controlled temperature variations to train the autoen-
coder. They subsequently evaluated its performance using
test data containing guided waves from both healthy and
damaged structures. Similarly, Lee et al. "' trained a deep
autoencoder using guided waves from an intact composite
plate and achieved fatigue damage detection by analyzing the
reconstruction error statistics under a laboratory-controlled
temperature. Despite the effectiveness of these autoencoder-
based damage detection methods in experimental settings,
their performance in detecting stable long-term damage under
uncontrolled environments with irregular variations remains

untested "’ .

Additionally, the autoencoder reconstruction-
based model mentioned above necessitates a comprehensive
collection of historical guided waves as training data. The
measurement conditions of this training data need to
encompass those of the evaluation data to minimize false

alarms'®?’ .

However, gathering such data poses challenges
as it requires long-term monitoring to cover various environ-
mental conditions, rendering these methods less practical in
real-world scenarios'"” .

In response to this challenge, our previous research''’
devised a novel approach to train autoencoders without the
need for collecting historical guided waves as training data.
Instead, the model is directly trained using evaluation data.
This method capitalizes on the bias learning property inherent
in neural networks, wherein they tend to prioritize learning
from large classes while overlooking smaller ones'"’.
Consequently, the autoencoder model is inclined to better
learn guided waves from regular environmental conditions
compared to those from irregular environmental, such as rain
and snow, and damage conditions, as guided waves from
irregular environments and damage conditions typically
exhibit anomalous signals that are underrepresented in the
evaluation data. Additionally, this method leverages a local
principal component analysis ( PCA) reconstruction tech-
nique to aid in distinguishing guided waves from irregular
2]

. - - r
environmental conditions and damage conditions" Conse-

quently, the proposed method achieves unsupervised damage
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detection solely using evaluation data, autonomously distin-
guishing guided waves in the evaluation data originating from
regular environments, irregular environments, and damage
variations.

However, guided wave structural health monitoring
systems are often implemented in extremely harsh environ-
ments' "', In such conditions, the guided wave measurement
system may encounter noise that distorts the measurements
over time, adversely affecting damage detection techniques,

. . . . 15
as discussed in various studies'"’.

Consequently, the
presence of noise might hinder the novel autoencoder’s
ability to accurately reconstruct guided waves. This issue
could lead to inaccuracies in the reconstruction coefficients,
rendering them ineffective for damage detection.

In practical considerations, it is essential to improve
methods for accurately detecting damage within complex and
noisy environments. A straightforward approach to
accomplish this is to denoise the guided waves before
implementing the damage detection process. Regarding
denoising signals, it is common to reconstruct signals using

" or low-rank representations,

[16

16
sparse, such as wavelets'

such as variational mode decomposition® and compressed

7!, This is because noise typically does not align

sensing''
well with these sparse or low-rank structures, leading to its
exclusion from the reconstructed signals when employing

181 Although sparsity and low-rank

such representations
based methods are widely recognized for their denoising
capabilities on structural health monitoring, they often do not
constitute the primary focus of research and are seldom
thoroughly investigated. Our previous study' '’ first explores
utilizing temporal correlations of guided waves for denoising
through the temporal PCA reconstruction method. This
research demonstrated the superior denoising capability of
techniques such as the two-dimensional Fourier transform,

and PCA,

correlations among guided waves, over the one-dimensional

random projection which exploit temporal
Fourier transform, which does not utilize these correlations.
Among the methods evaluated, PCA-based reconstruction
was found to offer the best denoising performance due to its
effective leverage of temporal correlations within the guided

waves.

1  Methodology

As depicted in Fig. 1, the proposed damage detection

framework comprises three modules: denoising module,

short-term PCA, and autoencoder reconstruction modules.
The denoising module serves to clean guided waves by
reconstructing them with local temporal PCA. Short-term
PCA reconstruction, also accomplished through local
temporal PCA | is utilized to identify irregular environmental
variations. In contrast, autoencoder-based reconstruction is
employed to detect damage variations, complemented by
short-term PCA reconstruction.
1.1 Local ( Temporal) PCA reconstruction

Both the denoising PCA reconstruction and short-term
( temporal ) PCA

entails partitioning the

PCA reconstruction employ local
reconstruction.  This technique
evaluation data X with dimensions N X M ( comprising N
guided waves) into several non-overlapping local batches or
time windows. Let X, denote the ¢—th batch of guided waves,
represented by a matrix with dimensionsL X M ( containing L
days of guided waves with M samples each) In this study,
each evaluation dataset spans 80 days of guided waves. Both
the denoising PCA reconstruction and short-term PCA
reconstruction are implemented with a 1— day time window
size (batch). In other words, they partition each evaluation
each (X,)
containing 1 000 guided waves in this paper. Local PCA

dataset into 80 non-overlapping batches,

reconstruction is accomplished using the transformation
matrix V, with a dimension of P XM and consists of P

eigenvectors ( principal components) that correspond to the P
largest eigenvalues for the covariance matrix )A([T)A(,for X,
where X , is obtained by subtracting the mean of each column
from X,'"*". The transformed representation is then computed

as:
Y, =X,V! (1)

Table 1 Parameters for training autoencoder network

(BHBHERENE55)

Parameters

Values in each layer

Neurons Number of Layers in Encoder Network 2,000 512 128 32

32 128 512 2,000

Neurons Number of Layers in Encoder Network
0. 000 5

Learning Rate

Batch Size 256

The representation Y, with L X P dimension contains
compressed information ( when P is smaller than M ).
Guided waves are reconstructed according to the following
equation ;

X =yvVv (2)
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Fig. 1

Autoencoder Reconstruction Coefficients

The damage detection framework incorporating a denoising module is depicted (M5 PR35 AR A6 B AE 2R 1A ) .

(a) Showcases guided waves utilized for assessing structural status, susceptible to corruption by noise stemming from harsh

environments; (b) Demonstrates the denoising process for guided waves through denoising PCA reconstruction; (c¢) and (d) Illustrate

short-term and autoencoder-based reconstruction methods, employed to derive short-term PCA and autoencoder-based reconstruction

coefficients, facilitating the identification of guided waves amidst regular, irregular environmental variations and damage variations

denoising PCA module is utilized for reconstructing raw
guided waves, whereas the short-term PCA reconstruction is
employed for processing denoised ( reconstructed ) guided
waves.

1.2 Autoencoder architecture

The autoencoder network architecture consists of both
an encoder and a decoder, visualized in Fig. 1(d). Tt’ s
important to note that the autoencoder module is employed to
reconstruct denoised guided waves generated by the
denoising PCA, rather than raw guided waves. The mean
square error ( MSE) is employed as the loss function to train

the model. We optimize the autoencoder to minimize the

average reconstruction error between the input and output in
the network. The parameters employed for training the
autoencoder are summarized in Table I. Within the encoder
network, the number of neurons ranges from 2 000 in the
first layer to 512, 128, and finally 32 in subsequent layers.
Conversely, in the decoder network, the number of neurons
is inversely proportional. The autoencoder is trained using
the “Adam” optimizer with a learning rate of 0. 000 5 and a
batch size of 256"

1.3 Reconstruction coefficient

The reconstruction performance of both the autoencoder

and short-term PCA method is assessed through the
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These

coefficients represent the Pearson correlation coefficient

reconstruction coefficients for the guided waves.

between a ( denoised ) guided wave and its corresponding
reconstructed guided wave, ranging from —1 to 1, which is

defined as following equation ;

= (xi_xi)<xi_xi) (3)

ot =t I I, = |l

r, represents our reconstruction coefficient, where |

represents the Euclidean norm. The variable x, and x/ are
scalars that represent the mean of the i —th ( denoised)
guided wave measurement x; and the reconstructed guided
wave x| ).

These reconstruction coefficients ¥ = [r, r, ry==-ry]"
obtained by the autoencoder and short-term PCA for each
denoised guided wave will be used to detect damage in noisy
conditions.

1.4 TIrregular variation detection

Short-term PCA reconstruction coefficients can be used
to detect irregular environmental variations, such as rain and
snow. Guided waves with short-term PCA reconstruction
coefficients below A are inferred to originate from irregular
environmental variations when they meet the condition;

49 < (4)

Where r'* represents the short-term PCA reconstruction
coefficients for the i—th measurement. As previous studies,
N corresponds to the 20—th percentile of all short-term PCA
reconstruction coefficients' '

1.5 Damage detection

Guided waves that cannot be reconstructed by the
autoencoder and are not identified as irregular variations (as
determined by short-term PCA reconstruction based on
Equation (4)) are inferred to be from damage variations.
Subsequently, the normalized reconstruction difference is
employed to denoise guided waves between short-term PCA
When

deviate

and autoencoder, computed using Equation (5).

these  reconstruction  coefficient  differences

significantly from 0, the corresponding measurements are
classified as damage variations. The damage detection
indicator is defined as follows:

r(S) _ r(L)

T _w (5)

median median

Where r'* and r'* represent the short-term PCA and

dr

autoencoder reconstruction coefficients, respectively, for the
() (L)

median median

i—th measurement. r and r denote the medians of all

short-term and autoencoder reconstruction coefficients for

guided waves in an evaluation data. These two medians are
utilized to normalize the reconstruction coefficients, aiming
to minimize the reconstruction difference between short-term
PCA and e
Therefore, damage is identified as follows:
dr, =7 (6)
The threshold 7 is not explicitly predetermined in this

autoencoder during regular variations

paper. Instead, the study employs the receiver operating
characteristic (ROC) curve, which involves sweeping across
various threshold values 17, to assess the performance of the
unsupervised damage detection framework. To mitigate false
alarms caused by irregular variations, we set dr;, to O for
guided waves that satisfy Equation (4).

1.6 Damage detection evaluation

In this paper, we utilize the receiver operating
characteristic ( ROC) curve and the area under the ROC
curve (AUC) to evaluate the damage detection performance.
This approach, widely employed in structural health
monitoring research, calculates the true positive rate (TPR)
and false positive rate ( FPR) by sweeping across possible
thresholds™™” . In this context, true positives (TP) represent
the number of measurements accurately identified as
damage, while false positives (FP) indicate the number of

measurements incorrectly identified as damage.

2 Experimental setup

We employ the same experiment dataset used in
study'™ to evaluate the performance of our strategy for
selecting optimal components under a range of environmental
conditions. The dataset includes ultrasonic guided waves
collected from an aluminum plate, dimensions 53 emX53 cm
X3 mm, located at the University of Utah in Salt Lake City.
This plate was subjected to varying outdoor conditions,
experiencing weather phenomena such as rain and snow. For
the guided wave monitoring, each measurement involved the
acquisition of 8 wultrasonic guided waves, together with
environmental information like temperature, humidity, air
pressure, and light levels. For more detailed information on

how the
1]

measurements were collected, refer to the

studies'”
2.1 Synthetic damage guided wave generation

The dataset for this experiment encompasses 80 days of
guided wave data, with a total of 80 000 measurements taken

under diverse environmental and operational circumstances,
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recording one measurement every 86 seconds. The guided
waves within this dataset experienced synthetic damage over
4 days.

methods previously established in the literature' ™. Such a

This synthetic damage was generated following

method conceptualizes a guided wave affected by damage as
a combination of a straightforward guided wave emitted
directly and another wave that has been altered through its
interaction with a simulated damage site'™. Consequently,
the guided waves that mimic damage variations are produced
by combing waves from both the shortest and longest paths of
transmission, presented in previous study "’

2.2 Damage detection under noisy conditions

To evaluate the framework’ s ability to detect damage in
the presence of noise, we introduce Gaussian noise
N(0,0%) to the guided waves. The intensity of the noise is
regulated by the signal-to-noise ratio (SNR) :

SNR,, = 101og(I;t:‘j) and P, = %2 Xl (7)

Our experiment assesses the framework ’ s ability to
detect damage in noisy conditions by analyzing the variation

of AUC scores as the SNR of the guided waves changes from
10 to =5 dB.

3 Results and discussion

Anomaly detection performance is computed for raw and
denoised guided waves across various signal-to-noise ratios,
ranging from oo ( Original ) to =5 dB. These results illustrate
the enhancement in damage detection under noisy conditions

facilitated by our proposed denoising strategy.

3.1 Guided wave reconstruction under noisy conditions
for PCA and autoencoder

In the first subplot of Fig. 2, reconstruction coefficients
for short-term PCA and autoencoder are computed using
In Fig. 2, the
reconstruction coefficients of guided waves by short — term
PCA, denoted as “PCA (1d),” and autoencoder, denoted
as “Enc (80d),” are depicted in subplots with varying
signal-to-noise ratios (SNR): o« (Ori.), 5, 0, and -3

dB, as indicated in each subplot’ s title. It is important to

original guided waves without noise.

highlight that in each scenario, the damage persists for 4
days, shaded in a gray region within each subplot. In all
instances, short-term PCA utilizes the first 15 components
for reconstructing guided waves, while the autoencoder-based
reconstruction coefficients are generated through training the
autoencoder for 10 epochs. A noticeable difference between
the short-term PCA  and

coefficients emerges during damage moments, as indicated in

autoencoder reconstruction

the shadowed region. However, as additional noise is
introduced into the original guided waves, reducing the
signal-to-noise ratio from o to 5 dB, the reconstruction
difference between short-term PCA and autoencoder Still
persists, although the overall reconstruction performance of

both methods

Consequently, the values of these reconstruction coefficients

deteriorates due to noise interference.
become lower and more variable, diminishing their ability to
distinguish anomaly regions, as demonstrated in the second
subplot.

Continuing to decrease the SNR of the guided waves,
further

the values of these reconstruction coefficients

decrease (reducing to around 0.7 and 0. 6 in the third and

fourth subplots ) and exhibit increased variability.
Original SNR 5 dB
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Fig.2 The reconstruction coefficients of guided waves by short-term PCA and autoencoder with varying signal-to-noise ratios
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Distinguishing the reconstruction difference between healthy
and damaged moments for achieving anomaly detection in
noisier conditions becomes nearly impossible, as illustrated
in the third and fourth subplots of Fig. 2.

3.2

reconstruction denoising strategy

Anomaly detection performance using PCA

Comparing the reconstruction coefficients in Fig. 2 with
those in Fig. 3, it can be found that our proposed PCA
reconstruction denoising strategy preserves the existence of
the reconstruction difference between healthy moments and
damage moments in noisy conditions. In Fig. 3, tall these
reconstruction coefficients are computed using denoised
guided waves, employing the first 30 components in the PCA
denoising reconstruction, instead of raw guided waves. Also,
the AUC scores computed using the short-term PCA and
autoencoder reconstruction coefficients with raw guided waves
decrease as the signal-to-noise ratio of these guided waves is
reduced ( by introducing stronger Gaussian noise into the

original guided waves ), as illustrated in the first-row

subplots in Fig. 4. The first-row subplots depict AUC scores
calculated using raw guided waves at varying signal-to-noise
ratios (SNR): (Ori. ), 10, 5, 0, =3, and =5 dB, with
each SNR labeled in the title of the respective subplot. In
contrast, the second-row subplots present AUC scores
derived from denoised guided waves, utilizing the first 40
components in the PCA denoising reconstruction. In the
computation of these AUC scores, the X-axis denotes the
number of training epochs used for autoencoder training,
labeled as “Train Epoch. (L),” and the Y-axis, labeled as
“Comp. Num. (S),” signifies the number of principal

components utilized in the short-term PCA reconstruction.

However, when we employ PCA to first reconstruct
(denoise ) these guided waves and then use the PCA
denoised guided waves to calculate the normalized

reconstruction coefficients difference, high AUC scores are
maintained even when the SNR of raw guided waves is
reduced to =3 and —5 dB, as shown in the second-row

subplots of Fig. 4.
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Fig.3 The reconstruction coefficients of guided waves by PCA and autoencoder with varying signal-to noise ratios after using denoised
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An interesting observation is that both excessively large
and excessively small training epochs, as well as the number
of components used in the short-term PCA reconstruction,
fail to yield high AUC scores for the anomaly detection
method. Previous research has indicated that excessively
large training epochs and a high number of components lead
the autoencoder and PCA to reconstruct guided waves not
only from healthy guided waves but also from damage
conditions. Conversely, excessively small training epochs
and a low number of components result in suboptimal
reconstruction of all guided waves. In these instances, the
distinct reconstruction difference between healthy moments
and damage moments disappears, ultimately compromising
the efficacy of anomaly detection.

3.3  Hyperparameter investigation for PCA recon-
struction denoising strategy

Considering the PCA denoising reconstruction process,
the key hyperparameter is the number of components used in
the PCA denoising reconstruction process. Accordingly, we
will vary the number of components from 4 to 60 to denoise
guided waves, and then calculate the AUC scores with these
denoised guided waves. It can be observed in Fig. 5, which

illustrates the change in the optimal AUC score ( the largest

AUC score over training epochs) with different SNR values,
the number of components used in the PCA denoising
reconstruction, and the number of components used in the
short-term PCA reconstruction. In each subplot, x represents
the number of short-term PCA components used to calculate
these optimal AUC scores. The number of components (4, 8,
15, 25, 40, and 60) used in the PCA denoising reconstruc-
tion is depicted in the legend at the bottom of this figure. It is
evident that when the SNR is larger, such as above 0, using a
small number of components to denoise guided waves results
in lower optimal AUC scores, as shown in the first four
subplots of Fig. 5. However, as the SNR continues to reduce,
using a small number of components to denoise guided waves
leads to higher optimal AUC scores compared to those using a
larger number of components, as shown in the last two
subplots of Fig. 5. This can be explained by the fact that
using too small a number of components to denoise guided
waves results in the reconstructed guided waves not only
removing noise but also losing more information, including
damage information. However, if the SNR is too low, using
too large a number of components will not completely filter out
this noise and then worsen the reconstruction coefficients,

thereby compromising anomaly detection.

oo Original SNR 10 dB SNR 5 dB SNR 0 dB SNR -3 dB SNR -5 dB
095 1A | N AN N ‘J\_
L ’ % ‘Y\
5090 | N ‘
E l NS
0.85 \
0.80

0 20 40 60 0 20 40 60 0 20 40
Component numbers Component numbers

@ 8 15

Component numbers

B 40 60

60 0 20 40 60 0 20 40 60 0 20 40 60

Component numbers Component numbers Component numbers

Fig.5 The optimal AUC score are calculated with denoised guided waves, with the signal-to-noise ratio changing

from e (Ori.) to =5 dB(FEMESEE AP AN R T BOR S 0L T, el AUC score ZZ1LIAT)

Another noteworthy point is that using too few

componentis to reconstruct ( denoise ) guided waves
diminishes the anomaly detection robustness to the number of
components used in the short-term PCA reconstruction.
denoising PCA

reconstruction and the short-term PCA reconstruction is the

Since the time window size of the
same, the number of components used in the denoising PCA
reconstruction determines the limit of components used in the
short-term  PCA

information for each component in the short-term PCA

reconstruction and the resolution of

reconstruction. For example, if the number of components

used in the PCA reconstruction is 4, using 4 components in
the short-term PCA reconstruction will result in all short-term
PCA reconstruction coefficients being 1 since the rank of the
matrix consisting of denoised guided waves is 4.
Consequently, the short-term Preconstruction will lack the

ability to detect irregular environmental variations.

4  Conclusion

This paper proposes a denoising approach to enhance

the performance of autoencoder-based damage detection
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under noisy conditions by utilizing a local temporal PCA
reconstruction with a 1-day time window. Our findings
indicate a significant improvement in the damage detection
capabilities when applying our denoising strategy, with SNR
values ranging from 10 to =5 dB.

The research further reveals that the optimal number of
components for the local temporal PCA reconstruction,
aimed at enhancing damage detection in noisy settings, is
dependent on the noise level (SNR) of the guided waves. In
highly noisy environments, it is advisable to use fewer
components for denoising to prevent the inclusion of excess
noise in the reconstructed guided waves, which could

short-term PCA and

Conversely, in environments

deteriorate the quality of both
autoencoder reconstructions.
with lower noise levels, employing more components is
beneficial as it incorporates more environmental and damage
information into the denoised (reconstructed) guided waves,
thereby improving damage detection. Therefore, for the
practical application of temporal PCA reconstruction in
improving damage detection, it is advisable to first estimate
the noise level of the collected guided waves, which aids in
choosing an appropriate number of components for the
denoising PCA reconstruction process. Noise level estimation
can be done through temporal correlation analysis of guided

waves from adjacent locations.
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