DOI: 10. 19650/j. cnki. cjsi. J2210307

一种新的机床位置误差灵敏度分析方法*

王培桐,范晋伟,任行飞,李 状

(北京工业大学机械工程与应用电子学院 北京 100124)

摘 要:本文提出一种新的机床位置误差灵敏度分析方法。首先基于多体理论和齐次变换矩阵建立了五轴龙门机床位置误差 模型。其次通过截断傅里叶技术来表征与位置有关的几何误差参数,每个误差参数对位置误差的灵敏度值可表示为其傅里叶 幅值平方。然后归一化处理,关键的几何误差参数为第2,3,8,15和26项误差。通过与传统的Sobol法对比,仿真结果表明两 种灵敏度分析方法辨识的关键几何误差相同且灵敏度值相近。此外,本文提出的灵敏度分析计算效率优于传统Sobol法。最 后为了验证关键几何误差的有效性,提出了一个关于机床关键几何误差的补偿实验。实验结果表明,补偿关键几何误差后机床 的加工精度提升了48%。因此,本文提出的机床位置误差灵敏度分析方法是可行的和有效的。

关键词: 数控机床;关键几何误差;灵敏度分析;傅里叶级数

中图分类号: TH161+.5 文献标识码: A 国家标准学科分类代码: 460.35

A novel sensitivity analysis method for machine tool position error

Wang Peitong, Fan Jinwei, Ren Xingfei, Li Zhuang

(College of Mechanical Engineering & Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China)

Abstract: This article proposes a new method for sensitivity analysis of machine tool position errors. Firstly, the position error model of five axis gantry machine tool is formulated, which is based on the multi-body theory and homogeneous transformation matrix. Secondly, the geometric error parameters related to the position are characterized by the truncated Fourier technique. The sensitive value of each error parameter to position error can be expressed as its Fourier amplitude square. After normalization, the key geometric error parameters are the 2nd, 3rd, 8th, 15th and 26th errors. Compared with the traditional Sobol method, the simulation results show that the key geometric errors identified by the two sensitivity analysis methods are the same and the sensitivity values are similar. In addition, the calculation efficiency of sensitivity analysis of the proposed method is better than that of traditional Sobol method. Finally, to verify the validity of key geometric errors, a compensation experiment on key geometric errors of machine tools is proposed. Experimental results show that the machining accuracy of the machine tool is improved by 48% after the key geometric errors are compensated. Therefore, the sensitivity analysis method of machine tool position error in this article is feasible and effective.

Keywords: CNC machine tools; key geometric error; sensitivity analysis; Fourier series

0 引 言

在现代制造业中,多轴数控机床由于其高生产率和 灵活性,被广泛地应用于复杂曲面的精密加工^[1-2]。如何 准确地提高多轴机床加工精度引起了人们的广泛关注。 然而,影响机床加工精度的因素很多,如几何误差、热误 差、切削力诱导误差和刀具磨损误差。在这些误差中,几 何误差是由的机床零部件制造和装配不准确等因素造成 的。它是重要的误差源之一^[3]。因此,准确的几何误差 建模和有效的补偿是提升加工精度的关键。

最常用的机床几何误差建模理论包括微分运动矩 阵^[4]、多体系统^[5]、POE 理论^[6]、螺旋理论^[78]等。其中 多体理论建模过程具有程式化、规范化、约束条件少以及 推导过程简单等特点被广泛应用于机床误差建模中。 Jiang 等^[9]利用多体理论推导了摇篮式五轴机床空间误

收稿日期:2022-08-15 Received Date: 2022-08-15

*基金项目:国家自然科学基金面上项目(51775010)、建设机床装备数控互联平台及大数据中心及应用平台(2021-0171-1-1)项目资助

差模型并重点地探究了转动轴几何误差参数对空间误差 的影响。Jiang 等^[10]基于多体理论建立了具有 41 个几何 误差的五轴齿形磨床刀具位置误差模型。基于上述优 点,本文采用多体理论对五轴数控机床位置误差进行建 模。虽然机床位置误差可根据多体理论和齐次变化矩阵 被表示,然而它是一个关于几何误差参数的高阶非线性 方程。如何定量地分析每个几何误差参数对机床位置误 差的影响就显得至关重要。为此,许多学者进行了深入 研究。Zhang 等^[11]利用乘法降维法建立了机床空间误差 全局灵敏度模型,该灵敏度模型采用各个误差参数对模 型输出的方差来计算灵敏度值,并确定了在工作空间下 影响刀具位置精度的关键几何误差参数,最后通过与 Sobol 灵敏度分析法进行对比,验证了该灵敏度分析法的 有效性。Yang 等^[12]提出了一种通过单球测量和三维几 何灵敏度分析识别倾斜/转台五轴机床 11 个位置无关几 何误差(position-indepent geometric error, PIGE)的方法。 该方法使用1个球和3个圆形测量装置来研究11个 PIGE 对每个测量路径以及测量路径之间的影响。Zou 等^[13]使用 Sobol 全局灵敏度分析方法量化五轴测量机的 37个几何误差对测量结果的影响。Li 等^[14]提出了利用 灵敏度指数对五轴机床体积误差进行灵敏度分析。虽然 在误差灵敏度方面已经做了很多工作,但仍然存在一个 问题。在精密加工过程中,多轴数控机床刀具运动是一 个复杂的空间轨迹,因此空间误差是一个众多几何误差 参数高度耦合的结果。如何准确地解耦机床位置误差并 快速地确定关键几何误差参数是亟待解决的。目前,传 统灵敏度分析方法中以 Sobol 法和 Morri 为主。然而这 些方法样本需求量较大且在计算过程中借助计算机进行 数值模拟,使模型"黑盒化"不可解。此外,将灵敏度分 析方法辨识出的关键误差应用于提升数控机床加工精度 研究较少。

针对上述局限性,本文提出了一种新的关键几何误 差灵敏度分析方法。首先以多体理论和齐次变换矩阵建 立机床空间误差模型,然后以机床位置误差模型为函数, 误差参数为自变量建立映射函数关系。同时将截断傅里 叶级数来表征误差参数,以此来计算每个误差参数敏感 值并确定关键几何误差参数。然后通过仿真对比了传统 Sobol 灵敏度分析法。最后以S样件为例,比较了补偿关 键几何误差后的加工精度与补偿其他几何误差的加工精 度,结果验证了该灵敏度方法有效性和可行性。

1 几何误差建模

1.1 几何误差的描述

几何误差来源于机械零件的装配误差和制造误 差。它反映在各个轴上的直线度误差、角度误差和垂 直度误差。本文以如图 1 所示的龙门铣床为例,该机 床的结构为 TTTRR,由工作台、X 轴、Y 轴、Z 轴、C 轴、B 轴组成。每个轴在空间上分别具有 6 个自由度,当它 移动时,会产生 6 个位置相关的几何误差参数。基于 此方法类推,五轴机床总共拥有 30 项位置相关几何误 差。此外,由于每个轴机床的装配关系,存在 7 项垂直 度误差参数。因此,五轴机床共有 37 项几何误差参 数,如表 1 所示。其中 $\sigma_j(i)$ 表示 i轴在j方向直线度误 差;同理 $\varepsilon_j(i)$ 表示 i轴在j方向角度误差; S_{ij} 则表示i轴 和j轴之间的垂直度误差。

图 1 五轴龙门机床结构模型

Fig. 1 Structure model of 5-axis gantry machine tool

表 1 几何误差参数序号 Table 1 Serial number of geometric error parameters

序号	几何误差参数
1,2,3,	$\sigma_{x}(x), \sigma_{y}(x), \sigma_{z}(x)$
4,5,6	$\boldsymbol{\varepsilon}_{x}(x), \boldsymbol{\varepsilon}_{y}(x), \boldsymbol{\varepsilon}_{z}(x)$
7,8,9,	$\boldsymbol{\sigma}_{x}(y), \boldsymbol{\sigma}_{y}(y), \boldsymbol{\sigma}_{z}(y)$
10,11,12	$\boldsymbol{\varepsilon}_{x}(y), \boldsymbol{\varepsilon}_{y}(y), \boldsymbol{\varepsilon}_{z}(y)$
13,14,15,	$\sigma_{x}(z)$, $\sigma_{y}(z)$, $\sigma_{z}(z)$
16,17,18	$\boldsymbol{\varepsilon}_{x}(z)$, $\boldsymbol{\varepsilon}_{y}(z)$, $\boldsymbol{\varepsilon}_{z}(z)$
19,20,21,	$\sigma_x(B), \sigma_y(B), \sigma_z(B)$
22,23,24	$\boldsymbol{\varepsilon}_{\boldsymbol{x}}(B)$, $\boldsymbol{\varepsilon}_{\boldsymbol{y}}(B)$, $\boldsymbol{\varepsilon}_{\boldsymbol{z}}(B)$
25,26,27,	$\sigma_{x}(C), \sigma_{y}(C), \sigma_{z}(C)$
28,29,30	$\boldsymbol{\varepsilon}_{x}(C), \boldsymbol{\varepsilon}_{y}(C), \boldsymbol{\varepsilon}_{z}(C)$
31,32,33,34,35,36,37	$S_{xy}S_{xz}S_{yz}S_{xb}S_{xa}S_{zb}S_{yc}$

1.2 刀具中心点位置误差模型

根据多体理论,该五轴机床运动可以表示为两条运 动链运动,如图2所示。其中两条运动链分别为刀具链 和工件链。在每条运动链中,相邻体间运动可有由4×4 阶矩阵表示。基于上述分析,机床各轴的实际运动方 程为:

$$[\boldsymbol{T}_{ij}]_a = [\boldsymbol{T}_{ij}]_p \times [\boldsymbol{T}_{ij}]_i \times [\boldsymbol{T}_{ij}]_s \qquad (1)$$

式中: $[T_{ij}]_a$, $[T_{ij}]_p$, $[T_{ij}]_i$, $[T_{ij}]_s$ 分别表示两个相邻体i和j之间的实际运动变换矩阵、位置误差变换矩阵、理想 运动变换矩阵和运动误差变换矩阵。

图 2 数控机床的拓扑结构 Fig. 2 Topology of CNC machine tools

根据多体理论和齐次变化变换矩阵,可以建立工件系统 中刀尖点的实际和理想位置方程。假设刀具中心点初始位 置向量为 $[r_i] = (0,0 - L,1)^T$,则刀具中心点的实际位置 (P_a) 和理想位置 (P_i) 可分别表示为式(2) 和式(3)。

$$\boldsymbol{P}_{a} = [\boldsymbol{T}_{01}]_{a} \cdot [\boldsymbol{T}_{12}]_{a} \cdot [\boldsymbol{T}_{23}]_{a} \cdot [\boldsymbol{T}_{34}]_{a} \cdot [\boldsymbol{T}_{45}]_{a} \cdot [\boldsymbol{r}_{i}]$$

$$(2)$$

$$\boldsymbol{P}_{i} = [\boldsymbol{T}_{01}]_{i} \cdot [\boldsymbol{T}_{12}]_{i} \cdot [\boldsymbol{T}_{23}]_{i} \cdot [\boldsymbol{T}_{34}]_{i} \cdot [\boldsymbol{T}_{45}]_{i} \cdot [\boldsymbol{r}]$$

$$(3)$$

其中,*L*表示刀具长度。各相邻体间实际位置矩阵如下:

$$\begin{bmatrix} \boldsymbol{T}_{01} \end{bmatrix}_{a} = \begin{bmatrix} \boldsymbol{T}_{01} \end{bmatrix}_{i} \begin{bmatrix} 1 & -\varepsilon_{z}(x) & \varepsilon_{y}(x) & \sigma_{x}(x) \\ \varepsilon_{z}(x) & 1 & -\varepsilon_{x}(x) & \sigma_{y}(x) \\ -\varepsilon_{y}(x) & \varepsilon_{x}(x) & 1 & \sigma_{z}(x) \\ 0 & 0 & 0 & 1 \end{bmatrix} = 1$$

$$\begin{bmatrix} 1 & -\varepsilon_{z}(x) & \varepsilon_{y}(x) & \sigma_{x}(x) \\ \varepsilon_{z}(x) & 1 & -\varepsilon_{x}(x) & \sigma_{y}(x) \\ -\varepsilon_{y}(x) & \varepsilon_{x}(x) & 1 & \sigma_{z}(x) \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \varepsilon_{z}(x) & 0 & 0 & 0 \\ \varepsilon_{z}(x) & 0 & 0 & 0 & 0 \end{bmatrix} = 0$$

$$\begin{bmatrix} 1 & -\varepsilon_{z}(x) & \varepsilon_{z}(x) & \varepsilon_{z}(x) \\ \varepsilon_{z}(x) & 0 & 0 & 0 \\ \varepsilon_{z}(x) & 0 & 0 & 0 \end{bmatrix} = 0$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ \varepsilon_{z}(x) & 0 & 0 & 0 \\ \varepsilon_{z}(x) & \varepsilon_{x}(x) & 0 & 0 \\ \varepsilon_{z}(x) & \varepsilon_{z}(x) & \varepsilon_{z}(x) \\ \varepsilon_{z}(x) & \varepsilon_{z}(x) \\ \varepsilon_{z}(x) & \varepsilon_{z}(x) & \varepsilon_{z}(x) \\ \varepsilon_{z}(x) & \varepsilon_{z}(x) & \varepsilon_{z}(x) \\ \varepsilon_{z}(x) & \varepsilon_{z}(x) \\ \varepsilon_{z}(x) & \varepsilon_{z}(x) & \varepsilon_{z}(x) \\ \varepsilon_{z}(x) \\ \varepsilon_{z}(x) & \varepsilon$$

$$\begin{bmatrix} \boldsymbol{T}_{12} \end{bmatrix}_{a} = \begin{vmatrix} 1 & -S_{xy} & 0 & 0 \\ S_{xy} & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} \begin{bmatrix} \boldsymbol{T}_{12} \end{bmatrix}_{i} \cdot \begin{bmatrix} 1 & -\varepsilon_{z}(y) & \varepsilon_{y}(y) & \sigma_{x}(y) \\ \varepsilon_{z}(y) & 1 & -\varepsilon_{x}(y) & \sigma_{y}(y) \\ -\varepsilon_{y}(y) & \varepsilon_{x}(y) & 1 & \sigma_{z}(y) \\ 0 & 0 & 0 & 1 \end{bmatrix} =$$

$1 - S_{xy}$	$0 \ 0 \ \ 1 \ 0 \ 0 \ 0 $	
$S_{xy} = 1$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0 0		
00		
1	$-\varepsilon_{z}(y) \varepsilon_{y}(y) \sigma_{x}(y)$	
$\mathcal{E}_{z}(y)$	$\frac{1}{1} = \varepsilon_x(y) = \sigma_y(y)$	(5)
$-\varepsilon_{y}(y)$	$\mathcal{E}_{x}(y) = 1 \mathcal{O}_{z}(y)$	
0		
	$\begin{bmatrix} 1 & 0 & 0_{xz} & 0 \\ 0 & 1 & -S & 0 \end{bmatrix}$	
$\begin{bmatrix} \boldsymbol{T}_{23} \end{bmatrix}_a$	$= \begin{vmatrix} 0 & 1 & 0 \\ -S & S & 1 & 0 \end{vmatrix} \begin{bmatrix} T_{23} \end{bmatrix}_i \cdot$	
	$\begin{bmatrix} 0 & 0 & y_{y_2} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	
- 1	$-\varepsilon_{z}(z) - \varepsilon_{z}(z) - \sigma_{z}(z)$	
$\varepsilon_z(z)$	$\frac{1}{1} = \varepsilon_{x}(z) \sigma_{y}(z)$	
$-\varepsilon_{x}(z)$	$\varepsilon_{x}(z)$ 1 $\sigma_{z}(z) =$	
0		
1 0	$S_{xz} = 0 1 = 0 = 0 = 0 $	
0 1	$-S_{yz} = 0 = 0 = 1 = 0 = 0$	
$-S_{xz}$ S_{yz}	1 0 0 0 1 z	
0 0	0 1 0 0 1	
1	$-\varepsilon_{z}(z) - \varepsilon_{y}(z) - \sigma_{x}(z)$	
$\boldsymbol{\varepsilon}_{z}(z)$	1 $-\varepsilon_x(z) \sigma_y(z)$	(6)
$-\varepsilon_y(z)$	$\varepsilon_{x}(z)$ 1 $\sigma_{z}(z)$	(-)
0	0 0 1	
	$1 0 S_{xc} 0$	
$\begin{bmatrix} \boldsymbol{T}_{34} \end{bmatrix}_a$	$= \left \begin{array}{ccc} 0 & 1 & -S_{yc} & 0 \\ 0 & 0 & 0 \end{array} \right \begin{bmatrix} T_{34} \end{bmatrix}_{i} \cdot$	
	$-S_{xc} S_{yc} 1 0$	
- 1	$\begin{vmatrix} 0 & 0 & 0 & 1 \end{vmatrix}$	
1	$-\varepsilon_{z}(C) = \varepsilon_{y}(C) = \sigma_{x}(C)$	
$\mathcal{E}_z(C)$	$\begin{bmatrix} 1 & -\varepsilon_x(C) & \sigma_y(C) \\ c_y(C) & 1 & \sigma_y(C) \end{bmatrix} =$	
$\mathcal{E}_{y}(\mathcal{C})$	$0 \qquad 0 \qquad 1$	
 0	$\frac{S}{S} = \frac{0}{2} \left[\log(C) - \sin(C) - 0 \right]$	
0 1	$-S_{xx} = 0$ $\sin(C) - \sin(C) = 0$	
$-S_{xx} = S_{xx}$	$\begin{array}{c c} & & \\ & & \\ & & \\ 1 & 0 \\ \end{array} \left \begin{array}{c} 0 & 0 \\ 0 \\ 0 \\ \end{array} \right \cdot \left \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right \cdot \left \begin{array}{c} 0 \\ 0 \\ \end{array} \right \cdot \left \left \begin{array}{c} 0 \\ 0 \\ \end{array} \right \cdot \left \left \begin{array}{c} 0 \\ 0 \\ \end{array} \right \cdot \left \left \begin{array}{c} 0 \\ 0 \\ \end{array} \right \cdot \left \left \left \begin{array}{c} 0 \\ 0 \\ \end{array} \right \cdot \left $	
0 0	0 1 0 0 0 1	
- 1	$-\varepsilon_{z}(C) - \varepsilon_{y}(C) - \sigma_{x}(C)$	
$\varepsilon_{z}(C)$	1 $-\varepsilon_x(C) - \sigma_y(C)$	(7)
$-\varepsilon_y(C)$	$\varepsilon_{x}(C)$ 1 $\sigma_{z}(C)$	(1)
0	0 0 1	

$$\begin{bmatrix} T_{45} \end{bmatrix}_{a} = \begin{vmatrix} 1 & -S_{xb} & 0 & 0 \\ S_{xb} & 1 & -S_{zb} & 0 \\ 0 & S_{zb} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} \begin{bmatrix} T_{45} \end{bmatrix}_{i} \cdot \begin{bmatrix} 1 & -\varepsilon_{z}(B) & \varepsilon_{y}(B) & \sigma_{x}(B) \\ \varepsilon_{z}(B) & 1 & -\varepsilon_{x}(B) & \sigma_{y}(B) \\ -\varepsilon_{y}(B) & \varepsilon_{x}(B) & 1 & \sigma_{z}(B) \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -S_{xb} & 0 & 0 \\ 0 & S_{zb} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} \cos(B) & 0 & \sin(B) & 0 \\ \cos(B) & 0 & \sin(B) & 0 \\ -\sin(B) & 0 & \cos(B) & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} \cdot \begin{bmatrix} 1 & -\varepsilon_{z}(B) & \varepsilon_{y}(B) & \sigma_{x}(B) \\ \varepsilon_{z}(B) & 1 & -\varepsilon_{x}(B) & \sigma_{y}(B) \\ \varepsilon_{z}(B) & 1 & -\varepsilon_{x}(B) & \sigma_{y}(B) \\ -\varepsilon_{y}(B) & \varepsilon_{x}(B) & 1 & \sigma_{z}(B) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(8)

根据式(2)和(3)刀具中心点实际位置和理想位置 方程,可以计算机床的位置误差方程为

$$\boldsymbol{P}_e = \boldsymbol{P}_a - \boldsymbol{P}_i \tag{9}$$

其中, P_a 表示刀具中心点的位置误差矢量。这里需 要注意的是,这里所建立的空间误差模型是不考虑刀具 半径情况。

2 几何误差灵敏度分析

2.1 灵敏度值定义

为了定量描述几何误差参数对刀具中心点空间误差 影响,本文引入灵敏度系数。然而,由于刀具中心点空间 误差包含许多误差参数和误差参数的耦合项,它对误差 分离和辨识造成一定的难度。为了提升解耦效率,本文 提出一种新的灵敏度模型来确定关键误差参数。

如表1所示,五轴机床具有37个几何误差参数,其 中7项误差参数与位置无关即垂直度误差。根据 文献[14],垂直度误差参数是由机床在装配不精确产生 的,它与轴运动位移无关。因此,它被认为是一个固定值 对机床空间误差增量为1。设 $P_{a}(k=x,y,z)$ 为几何误差 函数f(x):

$$\begin{cases} \boldsymbol{P}_{ek} = f(x) = f(x_1, x_2, x_3, \cdots, x_{30}) \\ x_k \in \{\boldsymbol{\sigma}_x(x), \boldsymbol{\sigma}_y(x), \boldsymbol{\sigma}_z(x), \boldsymbol{\varepsilon}_x(x), \cdots, \boldsymbol{\varepsilon}_z(C)\} \end{cases}$$
(10)

其中, $x_{\iota}(k = 1, \dots, 30)$ 表示所有几何误差参数。

根据文献[15],几何误差不仅是随机的、连续的,而 且与运动的位置有关。这些几何误差满足狄利克雷边界 条件,因此几何误差可以用傅立叶级数来表示。几何误 差函数 f(x))可以表示为:

$$f(x) = \sum_{j=1,3,5\cdots}^{N} A_j \sin\left(\frac{2\pi x}{\lambda_j}\right)$$
(11)

因此,系数A,可以表示为:

$$A_{j} = \frac{2}{N+1} \sum_{i=1}^{N_{i}} f(x_{i}) \sin\left(\frac{2\pi x_{i}}{\lambda_{j}}\right)$$
(12)

式中: t 表示几何误差参数的自变量,表示误差参数的波 长,在(0,2 π)中,有一个均匀区间 N_t(N_t = M λ _{min} + 1), *M* 通常取为 4, λ_{min} 是其中 { λ_{i} } 最小的波长。每个波长 都是线性无关的。所以存在一组整数 $\{r_i\}$ 使得集合 $\{\lambda_i\}$ 中的元素线性无关。

$$\begin{cases} \sum_{i=1}^{30} r_{i}\lambda_{j} \neq 0 \\ j \in B = [1, 2, 3, \dots, N_{t}] \\ t_{k} = \frac{2k - N_{t} - 1}{2N_{t}}, \quad k \in D = [1, 2, 3, \dots, N_{t}] \\ F = B - \left\{\frac{N_{t} + 1}{2}\right\} \end{cases}$$
(13)

$$r = A_i^2$$

模型中每个参数输出的方差可以表示为参数的谱 曲线:

$$V_i = \sum \tau \lambda_j = \sum_{n=i}^{M} A_{j=n}^2$$
(14)

灵敏度分析模型各输入误差参数引起的输出方差可 以表示为:

$$V = \sum_{t_1=1}^{30} V_{t_1} + \sum_{t_1=t_2}^{30} V_{t_1t_2} + \dots + \sum V_{t_1t_2\cdots t_{30}} = \sum_F \tau = \sum_{j=1}^{\frac{t_1t_2}{2}} \tau_j$$
(15)

其中, t_1, t_2, \dots, t_{30} 表示集合 $\{t\}$ 中的每个不同的参 数参数。

对各误差参数的灵敏度系数进行了归一化处理。各 误差参数对空间误差的影响灵敏度值 (S_i) 表示:

$$S_i = \frac{V_i}{V} \tag{16}$$

灵敏度指标是灵敏度模型输入误差参数的方差与输 出方差的比值。通过计算每个参数的灵敏度指数,然后 对其排序并确定关键参数项。这里的灵敏度指标仅反映 单个几何误差参数项对总的位置误差的影响。

2.2 灵敏度值求解

根据 2.1 节灵敏度的定义,灵敏度求解可转化为傅 里叶幅值求解。对于五轴机床而言,有 30 个与位置相关 的几何误差。30个几何误差参数的截断傅里叶幅值用 行向量 A1、A2、…、A30 表示。向量 A 中的参数用

(17)

(18)

(19)

式(17)表示。 $\mathbf{A} = [A_1, A_2, \cdots, A_{30}]$ 以 C 轴为例,与位置有关的几何误差参数以下表示。 $A_{i} = [A_{i1}, A_{i2}, A_{i3}, A_{i4}, A_{i5}, A_{i6}]$ $\sigma_{x}(c) = \sum_{i=1}^{n} A_{i1} \sin\left(\frac{\theta}{2i-1}\right)$ $\sigma_{y}(c) = \sum_{i=1}^{n} A_{i2} \sin\left(\frac{\theta}{2i-1}\right)$ $\sigma_{z}(c) = \sum_{i=1}^{n} A_{i3} \sin\left(\frac{\theta}{2i-1}\right)$ $\varepsilon_{x}(c) = \sum_{i=1}^{n} A_{i4} \sin\left(\frac{\theta}{2i-1}\right)$

$$\begin{aligned} \varepsilon_{y}(c) &= \sum_{i=1}^{n} A_{i5} \sin\left(\frac{\theta}{2i-1}\right) \\ \varepsilon_{z}(c) &= \sum_{i=1}^{n} A_{i6} \sin\left(\frac{\theta}{2i-1}\right) \end{aligned}$$

其中, j(j=1,2,…,6) 是描述与位置有关的几何误 差参数的截断傅里叶多项式的幅值,n表示阶数。通过 变换可以得到式(20)。

$$A^{*} \cdot \theta = B$$
(20)
$$A = \begin{bmatrix} A_{11} & A_{21} & A_{31} & A_{41} & A_{51} & A_{61} \\ A_{12} & A_{22} & A_{32} & A_{42} & A_{52} & A_{62} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ A_{1i} & A_{2i} & A_{3i} & A_{4i} & A_{5i} & A_{6i} \\ A_{1n} & A_{2n} & A_{3n} & A_{4n} & A_{5n} & A_{6n} \end{bmatrix}_{n \times 6}$$
(21)
$$\theta =$$

$$\begin{bmatrix} \sin \theta_{1} & \sin \theta_{2} & \cdots & \sin \theta_{j} & \sin \theta_{k} \\ \sin \frac{\theta_{1}}{3} & \sin \frac{\theta_{2}}{3} & \cdots & \sin \frac{\theta_{j}}{3} & \sin \frac{\theta_{k}}{3} \\ \sin \frac{\theta_{1}}{5} & \sin \frac{\theta_{2}}{5} & \cdots & \sin \frac{\theta_{j}}{5} & \sin \frac{\theta_{k}}{5} \\ \cdots & \cdots & \ddots & \cdots & \cdots \\ \sin \frac{\theta_{1}}{2n+1} & \sin \frac{\theta_{2}}{2n+1} & \cdots & \sin \frac{\theta_{j}}{2n+1} & \sin \frac{\theta_{k}}{2n+1} \end{bmatrix}_{n \times k}$$

$$(22)$$

$$\begin{bmatrix} \sigma_{x}(\theta_{1}) & \sigma_{x}(\theta_{2}) & \cdots & \sigma_{x}(\theta_{j}) & \sigma_{x}(\theta_{k}) \\ \sigma_{y}(\theta_{1}) & \sigma_{y}(\theta_{2}) & \cdots & \sigma_{y}(\theta_{j}) & \sigma_{y}(\theta_{k}) \end{bmatrix}$$

$$\boldsymbol{B} = \begin{bmatrix} \boldsymbol{\sigma}_{y}(\boldsymbol{\theta}_{1}) & \boldsymbol{\sigma}_{y}(\boldsymbol{\theta}_{2}) & \cdots & \boldsymbol{\sigma}_{y}(\boldsymbol{\theta}_{j}) & \boldsymbol{\sigma}_{y}(\boldsymbol{\theta}_{k}) \\ \boldsymbol{\sigma}_{z}(\boldsymbol{\theta}_{1}) & \boldsymbol{\sigma}_{z}(\boldsymbol{\theta}_{2}) & \cdots & \boldsymbol{\sigma}_{z}(\boldsymbol{\theta}_{j}) & \boldsymbol{\sigma}_{z}(\boldsymbol{\theta}_{k}) \\ \boldsymbol{\xi}_{x}(\boldsymbol{\theta}_{1}) & \boldsymbol{\xi}_{x}(\boldsymbol{\theta}_{2}) & \cdots & \boldsymbol{\xi}_{x}(\boldsymbol{\theta}_{j}) & \boldsymbol{\xi}_{x}(\boldsymbol{\theta}_{k}) \\ \boldsymbol{\xi}_{y}(\boldsymbol{\theta}_{1}) & \boldsymbol{\xi}_{y}(\boldsymbol{\theta}_{2}) & \cdots & \boldsymbol{\xi}_{y}(\boldsymbol{\theta}_{j}) & \boldsymbol{\xi}_{y}(\boldsymbol{\theta}_{k}) \\ \boldsymbol{\xi}_{z}(\boldsymbol{\theta}_{1}) & \boldsymbol{\xi}_{z}(\boldsymbol{\theta}_{2}) & \cdots & \boldsymbol{\xi}_{z}(\boldsymbol{\theta}_{j}) & \boldsymbol{\xi}_{z}(\boldsymbol{\theta}_{k}) \end{bmatrix}_{\boldsymbol{6}\times\boldsymbol{k}}$$

$$(23)$$

因此,几何误差参数的截断傅里叶振幅 A 可以表 示为:

$$\boldsymbol{A} = (\boldsymbol{\theta} \cdot \boldsymbol{\theta}^{\mathrm{T}})^{-1} \cdot \boldsymbol{\theta} \cdot \boldsymbol{B}^{\mathrm{T}}$$
(24)

仿真与实验 3

3.1 仿 直

如图3所示机床测量点分布,它是将机床工作空间沿 着体对角线进行划分,并在每条体对角线上等距取 25 个 点(除去体心点)。根据拉丁超立方体采样技术在每个数 据采集点采集 100 组数据。在第3节中(0.1 µm 位置误差 和 0.1 μrad 角误差),通过最小二乘法将离散点数据进行 拟合并确定每个几何误差参数。然后根据式(16)给出的 灵敏度值的定义来确定关键几何误差参数。

Fig. 3 Distribution of measuring points in machine tool space

基于所提出的灵敏度方法,可以计算出各个误差 参数项的灵敏度值。然后从大到小对这些灵敏度值进 行排序,找出对刀具位置误差有重要影响的误差参数。 当每个误差参数的灵敏度值计算完成之后,可以找到 最大的灵敏度值,并比较剩余误差参数的灵敏度值。 当误差参数项的灵敏度指标小于最大误差参数的 1/10 时,说明误差参数对刀具位置误差的影响很小,可以忽 略不计。反之,如果误差参数项的灵敏度值大于最大 误差参数的1/10,则意味着该误差参数被视为一个重 要的误差源。

五轴机床位置误差在空间3个方向上的灵敏度结果 如图 4~6 所示。对 X 方向上几何误差排序为 $\varepsilon_x(y)$, $\varepsilon_{x}(x), \sigma_{x}(x), \sigma_{x}(z), \sigma_{x}(y), \sigma_{x}(C), \sigma_{x}(B), \varepsilon_{x}(x),$ $\varepsilon_{x}(z)$ 。Y方向敏感几何误差参数为 $\varepsilon_{x}(y)$, $\varepsilon_{x}(x)$, $\sigma_{y}(z)$, $\sigma_{y}(x)$, $\sigma_{y}(y)$, $\sigma_{y}(C)$, $\sigma_{y}(B)$, $\varepsilon_{x}(z)$ or $\forall B \in Z$ 方向敏感几何误差参数为 $\sigma_z(z)$, $\varepsilon_x(x)$, $\sigma_z(y)$, $\sigma_z(B)$, $\boldsymbol{\varepsilon}_{x}(x), \boldsymbol{\varepsilon}_{x}(x), \boldsymbol{\varepsilon}_{x}(y)$ 。灵敏度实验结果表明,单向误差受 各轴方向直线度误差的影响较大。例如,在Z方向上敏 感的直线度误差参数为 Z 轴的定位误差 $\sigma_z(z)$ 和 C 轴直 线度误差 $\sigma_z(C)$ 。此外在 X 和 Y 方向上最敏感的误差参 数是角度误差为 $\varepsilon_{x}(y)$, $\varepsilon_{x}(x)$, $\varepsilon_{x}(y)$, $\varepsilon_{x}(x)$ 。

Fig. 6 Sensitivity value in Z-direction

此外,从图 7 中可以看到,在机床总的空间误差中最 敏感的几何误差参数依次为 $\sigma_y(x), \sigma_z(x), \sigma_y(y),$ $\sigma_z(z), \sigma_z(B)$ 。其中这些误差参数也是在 3 个方向上敏 感的误差参数。这是因为机床总空间误差是个众多误差 参数高度耦合的结果,所以每个方向对总空间误差贡献 也会不同。此外,从总空间敏感误差参数可以看出,平动 轴的误差参数对总空间误差贡献较大。其主要原因是由 于机床空间误差模型中,平动轴处于机床传动链底端造 成的。

3.2 灵敏度结果比较

为了验证本文提出的灵敏方法的有效性,我们采用 传统的 Sobol^[9]灵敏度法与本文灵敏度方法进行了比较。 Sobol 法是串联系统灵敏度分析的主要方法。两种灵敏 度分析方法计算结果如表 2 所示。本文提出的灵敏度分 析法计算的灵敏值与基于 Sobol 法计算的值接近且关键 几何误差相同。因此,本文提出的灵敏度分析方法得到 验证。

此外,我们选取空间误差中的关键误差参数 $\sigma_{z}(x)$ 和 $\sigma_{y}(C)$ 为例来验证本文提出的灵敏度方法计算效率。 这里我们给出灵敏度值波动率 L,如式(25)所示。

$$L = \frac{|S_i(j+1) - S_i(j)|}{S_i(j)} \times 100\%$$
(25)

其中,*j*表示采样数。当波动率小于10%时,以此来 判定灵敏度值趋于收敛。反之,灵敏度值不收敛。

如图 8 所示,它显示两种灵敏度分析方法在计算误 差参数 $\sigma_{s}(x)$ 在空间误差灵敏度值的收敛性能。本文提 出的灵敏度分析法在采样数为 40 时,波动率小于 10%。 然而,基于 Sobol 法在采样数为 60 时,波动率小于 10%。 此外,图 9 为两种灵敏度分析方法在计算误差参数 $\sigma_{s}(C)$ 在空间误差灵敏度值的收敛性能。本文提出灵敏 度方法在采样数为 40 时,波动率小于 10%。基于 Sobol 法在采样数为 50 时,波动率才具有小于 10%的指标。这 意味着本文提出的灵敏度方法可以利用较低的采样数且 在较短的时间内达到相同的计算精度。

总之,相比之下当使用 Sobol 方法分析机床关键几何 误差时,结果的分析精度取决于函数的非线性。当非线 性程度较低时,该方法能得到准确的结果。但当非线性

表 2 关键几何误差灵敏度值的比较							
Table 2	Comparison of	of sensitivity valu	es for critical				
geometric errors							
误差方向	关键误差参数	本文灵敏度值	Sobol 灵敏度值				
	$\sigma_x(x)$	0.097	0. 103				
	$\sigma_y(x)$	0. 151	0.146				
	$\varepsilon_{z}(x)$	0.082	0.079				
	$\sigma_x(y)$	0.083	0.083				
vərə	$\sigma_y(y)$	0.182	0.178				
A 刀 回	$\varepsilon_{y}(y)$	0.062	0.072				
	$\sigma_x(z)$	0.064	0.068				
	$\varepsilon_y(z)$	0.079	0.083				
	$\sigma_x(B)$	0.083	0.087				
	$\varepsilon_{y}(C)$	0.042	0.039				
	$\sigma_y(x)$	0. 121	0.119				
	$\boldsymbol{\varepsilon}_{x}(x)$	0. 132	0.142				
	$\sigma_y(y)$	0. 194	0. 193				
Y方向	$\boldsymbol{\varepsilon}_{x}(y)$	0. 121	0. 131				
	$\boldsymbol{\varepsilon}_{z}(\boldsymbol{y})$	0.117	0.109				
	$\varepsilon_y(B)$	0. 122	0.119				
	$\sigma_y(C)$	0. 121	0. 123				
	$\sigma_z(x)$	0. 161	0. 163				
	$\varepsilon_x(x)$	0. 127	0. 127				
7 方向	$\sigma_z(y)$	0. 152	0. 149				
と刀門	$\sigma_z(z)$	0.163	0.168				

程度较高时,可能导致迭代不收敛,结果不准确。例如, 当机床是三轴或四轴类型时,其位置误差非线性程度较 低,求解其灵敏度值收敛较快且采样样本数低。当分析 五轴甚至更多轴的类型的机床时,其位置误差非线性程 度较高,求解其灵敏度值收敛较慢且采样样本数较高。 事实上,五轴机床作为一种高度复杂的机械系统,其位置 误差是高度非线性的。与 Sobol 方法相比,本文提出的灵 敏度方法具有鲁棒性强、样本量小、效率高等优点。因 此,本文提出的方法更加适用于求解具有高度非线性函 数的灵敏度问题。

0.122

0.143

0.147

0.235

0.217

0.226

0.163

0.119

0.147

0.143

0.234

0.209

0.216

0.167

 $\sigma_{r}(B)$

 $\sigma_z(C)$

 $\sigma_{x}(x)$

 $\sigma_{x}(x)$

 $\sigma_{y}(y)$

 $\sigma_z(z)$

 $\sigma_{y}(C)$

总方向

3.3 误差补偿实验

为了更进一步验证关键几何误差的有效性,本文设 计了一个关于 S 样件的误差补偿实验。由于 S 样件具有 扭转角、变曲率等特点^[16],因此被广泛应用于五轴机床 加工精度检验和验收中。如图 10 所示,由上、下准线为 连续 B 样条曲线拟合的 S 型样件来检验该五轴龙门机床 的加工精度。S 型样件的长、宽、高、厚分别为 250、175、 40 和 3 mm。

在补偿实验之前,机床提前预热 20 min 并且保证室 内温度在 20℃左右,以此降低热误差对实验结果干扰。 误差补偿实验分为 3 组:第 1 组机床在没有补偿情况下 对 S 样件进行加工;第 2 组,机床在补偿其他误差参数项 情况下对 S 样件加工;第 3 组则是机床补偿关键几何误 差参数情况下来对 S 样件进行加工。如图 11 所示,这是 S 样件的加工现场。当 S 样件加工完之后,通过三坐标 测量机对 S 样件的加工误差进行测量以此判断关键几何

图 10 S型样件示意图 Fig. 10 Diagram of S-shaped specimens

误差的有效性。误差补偿方法则采用文献[17]的迭代 法来实现。首先利用激光干涉仪和球杆仪等测量设备对 各个机床几何误差源参数进行测量,然后利用多项式建 立机床几何误差源参数与所对应的运动轴位移量的定量 数学模型。最后在原有的 NC 数控指令基础上,依据机 床几何误差源参数与所对应的运动轴位移量的定量数学 模型,对原有的 NC 指令进行修正以此提升加工精度。

图 11 S 型样件加工现场 Fig. 11 The processing site of S-shaped specimens

如图 12 所示,从 3 组不同加工后的 S 样件表面质量 大致看出,第 3 组 S 样件表面质量最优;第 2 组次之; 第 1 组最差。为了定量地说明加工效果,我们选取 S 样 件上 Z=15 mm 空间曲线作为测量对象。如图 13 所示 S 样件加工误差测量结果。我们可以大致看出补偿关键 几何误差参数的补偿效果最好,其次是补偿其他误差。 此外,从表 3 可以看出,补偿关键误差后机床平均加工误 差降低了 0.012 1 mm,最大加工误差降低了 0.040 7 mm。 相较没有补偿误差,补偿关键几何误差平均加工精度 提升了 48%。然而,补偿其他几何误差后的机床平均 加工误差和最大加工误差仅降低了 0.004 8 mm 和 0.013 1 mm。其加工精度仅提升 19%。基于测量结果, 我们可以合理地得出通过补偿关键几何误差,机床加 工精度得到明显提升。因此,本文提出的机床位置误 差灵敏度分析方法是有效的和可行的。

(a) 没有补偿 (a) No compenstation

 (b) 补偿其他误差
 (b) Compenstation for other errors

(c) 补偿关键误差(c) Compensitation for critical errors

图 12 S 样件的加工效果

Fig. 12 Processing effect of S-shaped specimens

图 13 S 样件误差测量结果

Fig. 13 Measurement error result of S-shaped specimens

表 3 S 样件平均和最大误差 Table 3 Mean and maximum errors of S-shaped

	sp	mm	
类型	没有补偿	补偿其他误差	补偿关键误差
平均误差	0.025 2	0.020 8	0.013 1
最大误差	0.087 4	0.074 3	0.0467

4 结 论

采用截断傅里叶级数来表征几何误差参数,同时提 出了新的空间误差灵敏度分析模型。将空间灵敏度值求 解转换成求取傅里叶系数运算。通过该灵敏度分析方法 确定了五轴机床的关键几何误差参数 $\sigma_y(x),\sigma_z(x),$ $\sigma_y(y),\sigma_z(z),\sigma_z(B)$ 。与传统 Sobol 灵敏度法相比,本文 提出的灵敏度分析结果得到了验证。此外,该灵敏度方 法在计算灵敏度值时收敛较快,具有鲁棒性强、样本量 小、效率高等优点。设计了一个关于 S 样件的误差补偿 实验。通过测量加工后 S 样件的加工误差,我们发现机 床补偿关键几何误差后比补偿其他误差的加工精度得到 明显提升。因此,本文提出的灵敏度分析方法具有较高的工程价值。

参考文献

- [1] LI Z, SATO R, SHIRASE K, et al. Sensitivity analysis of relationship between error motions and machined shape errors in five-axis machining center-Peripheral milling using square-end mill as test case [J]. Precision Engineering, 2019, 60: 28-41.
- [2] 邓聪颖,冯义,魏博,等. 基于 SVR-GA 算法的广义加
 工空间机床切削稳定性预测与优化研究[J]. 仪器仪
 表学报,2019,40(10): 227-236.

DENG C Y, FENG Y, WEI B, et al. Research on prediction and optimization of cutting stability of generalized machining space machine tools based on SVR-GA algorithm [J] Chinese Journal of Scientific Instrument, 2019, 40 (10): 227-236.

[3] 谭峰,萧红,张毅,等.基于统一框架的数控机床热误差建模方法[J]. 仪器仪表学报,2019,40(10):95-103.

TAN F, XIAO H, ZHANG Y, et al. Thermal error modeling method of CNC machine tools based on unified framework [J]. Chinese Journal of Scientific Instrument, 2019, 40 (10): 95-103.

[4] 徐凯,李国龙,何坤,等.基于球杆仪的直线轴位置相
 关误差辨识研究[J]. 仪器仪表学报,2019,40(5):
 1-9.

XU K, LI G L, HE K, et al. Research on the identification of linear axis position correlation error based on the ball club instrument [J]. Chinese Journal of Scientific Instrument, 2019, 40 (5): 1-9.

 [5] 董泽园,李杰,刘辛军,等.数控机床两种几何误差建 模方法有效性试验研[J].机械工程学报,2019, 55(5):137-147.

> DONG Z Y, LI J, LIU X J, et al. Experimental research on the effectiveness of two geometric error modeling methods for CNC machine tools [J]. Journal of Mechanical Engineering, 2019, 55 (5): 137-147.

- [6] FU G, FU J, XU Y, et al. Product of exponential model for geometric error integration of multi-axis machine tools[J]. The International Journal of Advanced Manufacturing Technology, 2014, 71(9): 1653-1667.
- [7] FU G, FU J, GAO H, et al. Squareness error modeling

for multi-axis machine tools via synthesizing the motion of the axes [J]. Int J Adv Manuf Technol, 2017, 89(9): 2993-3008.

- FANG W, TIAN X. Geometric error sensitivity analysis for a 6-axis welding equipment based on Lie theory [J]. The International Journal of Advanced Manufacturing Technology, 2021, 113(3): 1045-1056.
- [9] JIANG X, CUI Z, WANG L, et al. Critical geometric errors identification of a five-axis machine tool based on global quantitative sensitivity analysis [J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(5): 3717-3727.
- [10] JIANG X, CUI Z, WANG L, et al. Critical geometric errors identification of a five-axis machine tool based on global quantitative sensitivity analysis [J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(5): 3717-3727.
- [11] ZHANG X, ZHANG Y, PANDEY M D. Global sensitivity analysis of a CNC machine tool : Application of MDRM [J]. Int J Adv Manuf Technol, 2015, 81(1-4):159-169.
- YANG S H, LEE K I. Identification of 11 positionindependent geometric errors of a five-axis machine tool using 3D geometric sensitivity analysis [J]. The International Journal of Advanced Manufacturing Technology, 2021, 113(11): 3271-3282.
- [13] ZOU X C, ZHAO X S, WANG Z W, et al. Error distribution of a 5-axis measuring machine based on sensitivity analysis of geometric errors [J]. Math Probl Eng, 2020:1-15.
- [14] LI Q ZH. A sensitivity method to analyze the volumetric error of five-axis machine tool [J]. The International Journal of Advanced Manufacturing Technology, 2018, 98:1791-1805.
- [15] FAN J, TAO H, WU C, et al. Kinematic errors prediction for multi-axis machine tools' guideways based on tolerance [J]. The International Journal of Advanced Manufacturing Technology, 2018, 98(5): 1131-1144.
- [16] 陶浩浩,范晋伟,王培桐.一种减小"S"形试件理论 切削误差的方法[J].机械工程学报,2020,56(17): 209-215.

TAO H H, FAN J W, WANG P T. A method to reduce

the theoretical cutting error of "S" shaped specimen [J]Journal of Mechanical Engineering, 2020, 56 (17): 209-215.

[17] WU C, FAN J, WANG Q, et al. Machining accuracy improvement of non-orthogonal five-axis machine tools by a new iterative compensation methodology based on the relative motion constraint equation [J]. Int. J. Mach. Tools. Manuf, 2018, 124(1):80-98.

作者简介

王培桐,2015年于河北科技大学机械设 计及其自动化专业获得学士学位,现为北京 工业大学材料与制造学部硕博连读博士生, 主要研究方向为机床精度设计、机床几何误 差和热误差。

E-mail: wangpeitong0617@163.com

Wang Peitong, received his B. Sc. degree in mechanical design and automation from Hebei University of Science and Technology in 2015. Now he is a doctoral candidate in the Department of Materials and Manufacturing of Beijing University

of Technology. His main research interests are machine tool precision design, geometric error and thermal error of machine tools.

范晋伟(通信作者),1993 于天津大学 机械制造及自动化系获得硕士学位,1996 于 天津大学机械制造及自动化系获得博士学 位,现为北京工业大学材料与制造学部教 授,主要研究方向:数控技术、精密加工、伺

服控制。

E-mail: jwfan@ bjut. edu. cn

Fan Jinwei (Corresponding author), received his M. Sc. degree in the Department of Mechanical Manufacturing and Automation of Tianjin University in 1993, and Ph. D. degree in the Department of Mechanical Manufacturing and Automation of Tianjin University in 1996. Now he is a professor in the Department of Materials and Manufacturing of Beijing University of Technology. His main research interests include digital control technology, precision machining, and servo control.