Non-contact microcantilever stiffness calibration method based on electrostatic force
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

TH823

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The calibration of the stiffness of microcantilever is of great significance in industrial and academic research. The traditional calibration method for microcantilever has drawbacks such as adhesive friction and contact wear. In order to effectively solve the problem of contact friction in traditional stiffness calibration, this paper proposes a non-contact microcantilever stiffness calibration method based on electrostatic force. This method applied static electricity as a standard load to the end of a microcantilever and calculated the stiffness of the microcantilever based on Hooke′s law. Numerical simulations of a parallel plate structure showed that when there is a small deviation in the relative position between the microcantilever and the reference electrode, the electrostatic force deviation is less than 5% . The results of the electrostatic force calibration experiment showed that the stiffness of the microcantilever was 0. 344 N/ m, with a relative measurement uncertainty of 1. 86% . This method is suitable for stiffness calibration of microcantilever and holds significant implications for the research field of micro-force measurements.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: November 25,2024
  • Published:
Article QR Code