Abstract:Magnetic particle imaging (MPI) belongs to the non-invasive imaging technology, which can characterize the concentration distribution of magnetic particle by detecting the magnetization signal of magnetic particle tracer. When it is utilized to detect the magnetization signal of magnetic nanoparticles, how to remove the excitation signal from the induced voltage is a key problem to be solved. The method for removing the excitation magnetic field feed-through in magnetic nanoparticles imaging signal detection is studied. The planar gradient detection coil is designed, and an iterative compensation control method is proposed to eliminate the excitation magnetic field coupling. In this way, the magnetization signal detection of magnetic nanoparticles is realized. Simulation computing and experimental results show that particle signal detection for different detection models can be realized by the proposed detection method. The signal-to-noise ratio of the particle signal obtained by this method is 2. 2 times that of the original detection method and 1. 3 times that of the filtering method. The excitation magnetic field feed-through suppression is up to 34 dB.