Measurement principle and structure optimization of two-dimensional displacement sensor based on planar standing wave magnetic field
DOI:
Author:
Affiliation:

Clc Number:

TH7

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In chip manufacturing, intelligent manufacturing, aerospace and other fields, precise plane positioning urgently needs synchronous independent precise measurement of two-dimensional displacement. In this article, a planar displacement sensor based on the principle of electromagnetic induction is proposed, which consists of a moving front and a fixed front. The fixed array includes m×n planar spiral coil arrays in series. The planar standing wave magnetic field array is generated on the measuring plane when 4 kHz AC current is applied. The moving front is arranged by four spiral coils in the form of 2×2 matrix, and four-channel modulation signals whose amplitude changes with the displacement of x axis and y axis are induced. The Cordic algorithm is used to solve the displacement of two dimensions. This article first introduces the structure and working principle of the sensor. The finite element analysis is implemented to the electromagnetic model, and numerical simulation is applied to the dislocation algorithm. According to simulation results, the measurement error is analyzed and traced, and the sensor structure is optimized. The sensor prototype is made and the experimental verification is carried out, which verifies the feasibility of the decoupling method of sensor structure and position shift. The maximum error of the sensor in the counter pole is 48. 7 μm. And the sensor resolution is 0. 317 μm. Experimental results show that the linearity of the sensor reaches 0. 15% within the range of 147 mm×147 mm, which provides theoretical support and experimental guidance for the further development of the high-precision two-dimensional time-gate displacement sensor.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: June 28,2023
  • Published: