Design, analysis and experiment of an automobile braking simulation test-bench with real-time adjustable adhesion coefficient
DOI:
Author:
Affiliation:

Clc Number:

U463. 5 TH113

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to realize accurate simulation and real-time adjustment of the road surface adhesion coefficient (RSAC) during vehicle braking simulation test, an automobile braking simulation test-bench (ABSTB) was designed which is capable of simulating different RSACs in real time by controlling the excitation current of an magnetic powder clutch. Then, a simulation model of a single-wheel automobile braking system based on road surface recognition (RSR) was built, and braking simulations were performed under the single road surface and the jumping road surface, respectively. An experimental system for the automobile braking simulation was developed to carry out the automobile braking simulation experiment on a single road surface and the tracking control experiment of the RSAC under the jumping road surface, respectively. Research results show that the braking distance reduces by 3. 1% under the RSR-based optimal slip ratio condition compared with that under the fixed target slip ratio condition for braking on the wet asphalt road surface at an initial speed of 120 km/ h. The phenomenon becomes more obvious under the road surface with a low RSAC. Moreover, experimental values of vehicle speed and wheel speed basically consist with simulation values under the single road surface. The maximum tracking error of the RSAC is only 6. 2% , which proves that the tracking control effect is satisfactory under the jumping road surface condition.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: June 28,2023
  • Published: