基于电磁多维时空特性的永磁同步电机高阻故障智能诊断研究
DOI:
CSTR:
作者:
作者单位:

1.安徽大学电气工程与自动化学院合肥230601; 2.中国电力科学研究院有限公司北京100192

作者简介:

通讯作者:

中图分类号:

TM307TH165+.3

基金项目:

安徽省青年科学基金(2408085QE163)项目资助


Research on intelligent diagnosis of high resistance faults in permanent magnet synchronous motors based on electromagnetic multidimensional characteristics
Author:
Affiliation:

1.School of Electrical Engineering and Automation, Anhui University, Hefei 230601,China; 2.China Electric Power Research Institute Co., Ltd., Beijing 100192, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    永磁同步电机(PMSM)长期遭受频繁“电-磁-力-热”冲击,这会加速绕组绝缘老化,导致高阻连接(HRC)故障发生。HRC进一步诱发PMSM产生更为严重的损伤,准确诊断该类故障具有重要意义。目前,依据PMSM运行电压和负荷电流的演变规律,可为精准识别HRC提供参考。但是上述均为侵入式方法,可能会对电机正常运行造成一些干扰。由于HRC故障下电机空间电磁分布会发生显著改变,电机空间漏磁信号同样可提供PMSM的状态信息,且漏磁信号采集可使用非侵入式方法。为此,提出了一种基于电磁多维时空特性的PMSM高阻故障智能诊断方法,建立空间漏磁信号与电机差异化状态的关联关系,联合智能算法实现电机状态的智能评估。首先,依据电机绕组等效电路模型解析故障下电磁信号演变规律,明确最优电磁测试点。其次,提出了基于漏磁信号阵列的特征图像转换以及升维方法,联合GoogLeNet网络诊断电机故障。最后通过仿真模型与实验平台进行验证,实验结果表明:通过漏磁信号阵列的特征图像升维与智能评估方法能够准确识别和定位HRC,进一步实现HRC故障程度的评估,其准确率高达97%,验证了所提方法的有效性。该方法具有非侵入式和高准确性的优点,针对PMSM具有较广的应用前景。

    Abstract:

    Permanent magnet synchronous motor (PMSM) is subjected to frequent electric-magnetic-force-thermal shocks for a long period of time, which accelerates the aging of winding insulation and leads to the occurrence of high-resistance connection (HRC) faults. HRC faults further induce more serious damages to the PMSM, making their accurate diagnosis highly significant. At present, based on the evolution law of PMSM operating voltage and load current, it can provide reference for accurate identification of HRC. However, the above are invasive methods, potentially causing interference with the normal operation of the motor. Since HRC faults significantly alter the electromagnetic field distribution within the motor, the leakage signals in the motor space can serve as an alternative, non-invasive source of state information. By acquiring these leakage signals, a non-invasive approach to diagnosing HRC faults can be realized. To this end, an intelligent diagnosis method for PMSM high-resistance faults based on electromagnetic multidimensional spatio-temporal characteristics is proposed. This method establishes the correlation relationship between spatial leakage signals and the motor′s differentiated state, enabling the intelligent motor state evaluation by a joint intelligent algorithm. First, the electromagnetic signal evolution law under fault is analyzed based on the equivalent circuit model of the motor winding, identifying the optimal electromagnetic test point. Secondly, the feature image conversion and dimensioning method based on the array of leakage signals are proposed to diagnose motor faults with GoogLeNet network. Finally, the proposed method is verified by simulation model and experimental platform. The experimental results show that the feature image upscaling and intelligent assessment method based on the leakage signal array can accurately identify and locate HRC while also assessing fault severity, achieving an accuracy rate of up to 97%, which verifies the effectiveness of the proposed method. The method has the advantages of non-invasive and high accuracy, and has a wider application prospect for PMSM.

    参考文献
    相似文献
    引证文献
引用本文

吴振宇,张捷,王慧,胡存刚,曹文平.基于电磁多维时空特性的永磁同步电机高阻故障智能诊断研究[J].仪器仪表学报,2025,46(3):219-230

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-28
  • 出版日期:
文章二维码