基于密度-距离的t混合模型流式数据聚类
DOI:
CSTR:
作者:
作者单位:

1.上海大学机电工程与自动化学院上海200072;2.上海市智能制造及机器人重点实验室上海200072;3.上海纳衍生物科技有限公司上海201108

作者简介:

通讯作者:

中图分类号:

TH773TP391

基金项目:

上海市浦江人才计划(17PJ1432300)项目资助


Clustering based on densitydistance and t mixture model in flow cytometry data
Author:
Affiliation:

1. School of Mechatronics Engineering and Automation, Shanghai University,Shanghai 200072, China; 2. Shanghai Key Laboratory of Intelligent Manufacturing and Robotics,Shanghai 200072, China; 3. Shanghai Nayan Biotechnology Co., Ltd,Shanghai 201108,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统流式数据采用人工设门法分析,效率低下且依赖于专家。近几年,很多自动流式数据聚类算法纷纷被提出,然而针对数据量不多且分布稀疏的小样本类群始终没有很好的解决办法。提出了一种基于密度距离的t混合模型流式数据聚类优化方法,能够较好地解决小样本类群区分困难的问题。该方法通过密度距离中心算法定位各类群的初始中心,作为t混合算法的初值对样本数据进行处理,通过最大似然估计求出各类群对应的样本数目,从而实现样本聚类。实验表明,与经典模型算法相比,基于密度距离的t混合模型优化算法具有更好的稳定性和可靠性,对小样本类群以及混叠的类群具有较强的适应能力。

    Abstract:

    Traditionally, the flow cytometry data is analyzed manually, which is inefficient and depends on expert experiences. In recent years, a lot of automatic cluster algorithms have been proposed. However, the clustering performance is not satisfied for sparse data with a random distribution. Therefore, this paper presents an automatic clustering method based on densitydistance center for tmixture model algorithm in flow cytometry data, which is suitable for rare samples. The proposed method finds the center of each group by densitydistance center algorithm and uses it as the initial value of tmixture model to estimate the sample data by maximum likelihood estimation. Compared with the classical algorithm, the result shows that the tmixture model based on densitydistance center has better stability and reliability, and can better fit small or mixed samples.

    参考文献
    相似文献
    引证文献
引用本文

赵其杰,柯震南,陶靖,卢建霞.基于密度-距离的t混合模型流式数据聚类[J].仪器仪表学报,2017,38(9):2130-2137

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-11-01
  • 出版日期:
文章二维码