基于特征基的 GMC 卷积稀疏机械故障特征解析方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH133

基金项目:

国家重点研发计划(2022YFB3303603)、国家自然科学基金(52075030)、国家资助博士后研究人员计划(GZC20230202)项目资助


Feature-based GMC convolutional sparse representation method for mechanical fault feature resolution
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在机械设备的复杂工况下,监测信号易受多振动源及环境噪声干扰,导致故障特征微弱且呈现强耦合特性,这给设备故 障诊断带来极大挑战。 因此,提出了一种基于振动特性基的 GMC 增强卷积稀疏机械故障特征解析方法,实现微弱耦合故障特 征解析。 首先,构造了一种自适应单边衰减小波匹配算法以获取最优特征原子,将最优特征原子升维同时匹配故障周期,以得 到具有周期特征的振动特征基。 其次,提出基于 GMC 增强的卷积稀疏编码,结合振动特征基优化求解稀疏系数。 此外,提出了 一种基于平均峭度与谐波能量比的过程参数优化选择方法,克服了优化过程中关键参数难选取的问题。 最后,提取包络谱主要 特征与理论故障特征频率对比判断故障类型。 通过仿真分析和试验台信号验证,并对比分析了基于谱峭度分解和可调变 Q 因 子小波变换 GMC 稀疏增强等两种传统方法。 实验结果表明,相较于上述两种传统方法,本文提出的方法可以有效地分离不同 类型的故障特征信号,并实现故障特征的增强。

    Abstract:

    In complex working conditions, the monitoring signals of mechanical equipment are easily disturbed by multi-vibration sources and background noise, making weak fault features and strong coupling. It brings a great challenge to fault diagnosis. Therefore, a generalized minimax-concave enhanced convolutional sparse mechanical fault features resolution method based on the vibration characteristics atom is proposed to analyze weak features and strong-coupling faults. Firstly, an auto-adapted single-side fading wavelet framework is constructed to obtain the optimal feature atoms. The optimal feature atoms are increased in dimension to match the fault periodic to get the vibration feature atoms with periodic characteristics. Secondly, a convolutional sparse coding method based on GMC enhancement is proposed, which combines vibration feature atoms to obtain the sparse coefficients optimally. In addition, a processing parameter optimal selection method based on the ratio of average kurtosis to harmonic energy is designed, which overcomes the dilemma of selecting key parameters. Finally, the main features of the envelope spectrum are extracted and compared with theoretical fault feature frequencies to determine fault type. The effectiveness and superiority of the proposed method are verified by simulated and real test-bed signals. The spectrum kurtosis and tunable Q-factor wavelet transform Generalized Minimax-concave sparse enhancement method are set as comparison groups. The results demonstrate that different fault features are better decoupled, and the sparse component amplitudes are well improved compared to the comparison method.

    参考文献
    相似文献
    引证文献
引用本文

卢 威,韩长坤,闫晶晶,宋浏阳,王华庆.基于特征基的 GMC 卷积稀疏机械故障特征解析方法[J].仪器仪表学报,2024,45(7):239-249

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-24
  • 出版日期:
文章二维码