基于多旋翼无人机的正交式风压矢量分解测风法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH765

基金项目:

江苏省重点研发计划(BE2018719)、国家自然科学基金(61671248)、国家重点研发计划资助(2018YFC1506102)、江苏省“信息与通信工程”优势学科计划项目资助


Orthogonal wind pressure vector decomposition wind measurement method based on multirotor UAV
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对多旋翼无人机平台上的测风设备会受到旋翼扰流干扰的问题,基于伯努利方程提出了一种适用于多旋翼无人机的利用正交式风压矢量分解反演风速风向的算法,并通过设计感压腔的布局与结构进一步降低了旋翼扰流的影响。利用Space claim和Meshing软件建立测风模型,通过Fluent软件改变流场内气流的速度与方向,对该测风法在不同流场中进行了仿真研究。在实际测量中,当风速高于2 m/s时正交式风压矢量分解测风法的测风速误差均保持在10%以内,证明了该法可以有效降低旋翼扰流对测风的干扰,实现高精度测风。

    Abstract:

    Aiming at the problem that wind measurement equipment on the multirotor unmanned aerial vehicle (UAV) platform suffers from the rotorwing turbulent flow interference, based on Bernoulli′s equation, an algorithm is proposed, which utilizes orthogonality type wind pressure vector decomposition to inverse wind speed and wind direction and is suitable to be applied in multirotor UAV. Through designing the layout and structure of the pressure sensing cavity, the impact of the rotorwing turbulent flow is further decreased. The Space claim and Meshing software was utilized to establish the wind measurement model, and the Fluent software was used to change the speed and direction of the airflow in the flow field; the simulation study on the wind measurement method was carried out in different flow fields. During actual measurement, when the wind speed is higher than 2 m/s, the wind measurement error of the proposed orthogonal wind pressure vector decomposition wind measurement method is kept within 10%, which proves that the proposed method could effectively decrease the interference of the rotorwing turbulent flow on wind measurement, and achieve high accuracy wind measurement.

    参考文献
    相似文献
    引证文献
引用本文

侯天浩,行鸿彦,刘洋.基于多旋翼无人机的正交式风压矢量分解测风法[J].仪器仪表学报,2019,40(10):200-207

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-03-09
  • 出版日期: