DOI: 10. 19650/j. cnki. cjsi. J2412734

井下工具倾斜姿态误差的非线性融合补偿*

张夷非1,程为彬1,郭 涛1,胡少兵1,郑恭明2

(1.长江大学地球物理与石油资源学院 武汉 430100; 2.长江大学电子信息与电气工程学院 荆州 434023)

摘 要:准确的井下钻探姿态测量精度取决于惯性测量单元(IMU)误差的校正,基于简化误差模型的椭球+平面拟合后,井斜角 和工具面角的系统性误差仍需补偿,重力场翻转测试和 Monto-Carlo 模拟还说明姿态误差存在非线性变化。基于倾斜翻转辨识 校正残差和参数寻优,并进一步提出等角距均衡校正技术;进行典型姿态下的数据测量,分别采用椭球+平面拟合、多点翻转优 化和等角距均衡技术进行误差补偿。实验结果表明,提出的翻转优化和均衡技术可有效降低非线性姿态误差,标定后近垂直姿 态井斜角误差从±0.1°降低至±0.000 8°(1σ),工具面角误差从±1°降低至±0.016 8°(1σ)。

关键词: 姿态测量;校正误差;误差补偿;翻转优化;均衡校正

中图分类号: TH763 文献标识码: A 国家标准学科分类代码: 460.40

Fusion-based compensation for tilt error nonlinearity of downhole tool

Zhang Yifei¹, Cheng Weibin¹, Guo Tao¹, Hu Shaobing¹, Zheng Gongming²

(1. College of Geophysics and Petroleum Resources, Yangtze University, Wuhan 430100, China;
2. School of Electronic Information and Electrical Engineering, Yangtze University, Jingzhou 434023, China)

Abstract: The accuracy of downhole drilling attitude relies on the error calibration of the inertial measurement unit (IMU). However, ellipsoid and plane fitting based on simplified linear models have failed to meet engineering requirements. The periodic residual error of axial tilt angle and tool face angle needs further compensation, and its nonlinearity is confirmed by multi-point tumble tests and Monte Carlo simulations. In this study, we employ post-fit identification through tilt tumble tests and perform parameter optimization, followed by proposing an equidistant balance correction technique. Data is collected under typical cases where ellipsoid fitting, plane fitting, tumble optimization, and equidistant balance correction technique are applied in experiments. The results indicate that tumble optimization and the equidistant balance correction technique effectively reduce the nonlinearity of attitude error, reducing the near-vertical angle error of axial tilt from an initial $\pm 0.1^{\circ}$ to calibrated $\pm 0.000 \ 8^{\circ} (1\sigma)$, and the tool face angle error from initial $\pm 1^{\circ}$ to $\pm 0.016 \ 8^{\circ} (1\sigma)$.

Keywords: attitude measurement; calibration error; error compensation; tumble optimization; balance correction

0 引 言

2024 年1月工信部等7个部门前瞻部署"未来空间" 新赛道,推动深部资源勘探开发装备创新;2024 年3月我 国深地科探井首次成功穿越万米;深部勘探开发离不开精 确的地下姿态测量,特别是长长的近垂直井段。与航空航 天、地面和水下的载体导航一样,需要采用惯性测量单元 (inertial navigation unit, IMU)进行地下姿态测量,其中加速度传感器可以测量载体的倾斜姿态,包括俯仰角和滚转角,石油行业分别称为井斜角 I 和重力工具面角 T。

姿态确定过程中,传感器本身、安装、测量和计算都 会产生误差,一般分为系统误差和随机误差。加速度计 系统误差包括标度因数、零偏和未对准/非正交等,随机 误差由传感器自身、仪器和测量设备产生,呈现随机特 征^[1-2]。针对系统误差模型,传统重力校正借助精密分度

收稿日期:2024-04-15 Received Date: 2024-04-15

^{*}基金项目:湖北省重点研发计划(2020BAB094)项目资助

装置(如分度头、转台等),在1g重力场下完成^[3-6]。此 外,姿态无关的标定方法根据重力场标量不变,无需外部 参考完成中低精度姿态校正^[7-9]。

近垂直井段下,IMU的水平二轴信号幅值极小,国际 先进的随钻测量 IMU 单元在井斜 3°~5°内无法精确测 量^[10-11],即存在不可测、测不准难题,是目前研究热点。 为提高近垂直姿态的姿态精度,校正方法考虑误差模型 高阶非线性。徐仕会^[12]在 28 个观测位置下,建立包含 高次项和交叉耦合项在内的非线性误差模型,利用双加 速度计正交方案提高标定精度。Wang 等^[13]将误差模型 拓展至三阶,在给定初值的假设下建立惯性器件的非线 性参数模型,以提高精度。

精确的传感器模型有助于降低系统性测量误差。但 复杂模型使观测点增多,观测矩阵维数上升,大幅提高计 算成本,并存在数值稳定问题,不便于工程化应用。同 时,重力场无法充分激励误差模型的交叉耦合和非线性 标度因数,需要额外的离心或线振动测试来识别高阶误 差^[14]。因此重力场校正的非线性误差不可避免地影响 对线性参数的估计。

综合全姿态误差模型准确建模的困难,以及兴起的 椭球+平面拟合融合方法,本文研究重力场倾斜多点翻转 的参数优化方法,并进一步融合等角距均衡校正技术,完 成井下全姿态非线性误差的补偿,以提高深部钻探装备 的姿态测量精度。

1 倾斜姿态误差的非线性

1.1 倾斜姿态解算

井下随钻姿态测量多采用地理北西天 ONWS 坐标 系,某型 IMU 采用 Z-Y-Z 旋转如图 1 所示,得到井斜角 I 和工具面角 T 下的重力加速度归一化理论值为:

$$\boldsymbol{G} = \begin{bmatrix} G_x \\ G_y \\ G_z \end{bmatrix} = \begin{bmatrix} \sin I \cos T \\ \sin I \sin T \\ -\cos I \end{bmatrix}$$
(1)

则井斜角误差 dI 和工具面角误差 dT 表示为[13]:

$$dI = \begin{cases} -\frac{dG_z / \sin I}{-\sin I \cdot dG_x + \cos I \cdot \cos T \cdot dG_z} \\ \frac{-\sin I \cdot dG_x + \cos I \cdot \sin T}{\sin^2 I \cdot \sin T} \\ \frac{\sin I \cdot dG_y + \cos I \cdot \sin T \cdot dG_z}{\sin^2 I \cdot \cos T} \end{cases}$$
(2)

考虑传感器非线性,加速度计的输出模型满足式(3)。

$$E - S(I,I) (G + b(I,I)) + E$$

$$S(I,T) \approx \begin{bmatrix} S_{xx}(I,T) & S_{yx}(I,T) & S_{xx}(I,T) \\ S_{xy}(I,T) & S_{yy}(I,T) & S_{zy}(I,T) \\ S_{xz}(I,T) & S_{yz}(I,T) & S_{zz}(I,T) \end{bmatrix}$$
(3)

式中: E 为测量的三轴分量; b 和 E 分别为零点偏置和噪 声; S(I,T)为误差矩阵。全姿态下,误差矩阵元素和偏 置均受传感器输出非线性影响。

图 1 井下钻具姿态和坐标转换

即使传感器三轴具有相等的测量精度,由于校正点数据不可避免地包含了非线性误差,导致解算的倾斜姿态误差也呈现非线性变化^[15]。

1.2 基于椭球及平面拟合的 Monte-Carlo 仿真

一种两步校正策略利用椭球拟合(ellipsoid fitting, EF)确定加速度计标度因数和偏置,再采用平面拟合法 (plane fitting, PF)来解决加速度计与 IMU 轴线之间的未 对准问题^[16]。为了验证所述校正策略的有效性,根据误 差参数^[17](如表1所示),在归一化重力矢量球面上生成 Monte-Carlo 仿真的参考点集和测量点集。

表 1 IMU 误差参数分布设置 Table 1 Error parameter distribution of IMU

误差来源	误差类型	参数分布		
	标度因数/(×10 ⁻⁶)	均匀分布[-5 000,5 000]		
	二阶非线性/(μg/g ²)	均匀分布[-5,5]		
系统误差	轴间非正交/(°)	均匀分布[-0.5,0.5]		
	三轴未对准/(°)	均匀分布[-1,1]		
	偏置/mg	均匀分布[-1,1]		
随机误差	噪声/mg	正态分布(0,0.01)		

仿真点集(叉标识)根据 IMU 理论姿态(圆标识)生成 如图 2 所示。拟合所需的参考点集如图 2(a)所示,对应绕 *x、y、z* 轴线的旋转。验证所需的测试点集如图 2(b)所 示,对应 80°/45°/10°/5°/3°井斜时绕*z* 轴的均匀旋转。

EF+PF 校正前后的倾斜测量仿真结果如图 3 所示, 为保证各图最大可视化,工具面角误差的纵轴幅值有变 化。实线代表测试点集直接解算的未校正倾斜误差,虚 线代表 EF+PF 校正后解算的校正倾斜误差。角度误差 曲线是根据 1 000 次仿真的误差平均值绘制,*dI*_{pp} 和 *dT*_{pp} 分别为井斜角和工具面角误差曲线的峰峰值。

1.3 近垂直姿态误差非线性的试验验证

以 IMU 中某轴加速度计为例,近垂直姿态下重力场

倾斜翻转的测量信号如图 4(a) 所示。将加速度计输出 展开为傅氏级数,采用最小二乘法估计参数,在重力场下

基于不同倾斜面翻转所获得的标度因数和偏置如图 4 (b)和(c)所示。同时,利用这些估计参数,通过线性误 差模型校正后的残差如图4(d)所示。

可以看出:1)近垂直姿态下,传感器的标度因数和偏 置存在明显的非线性;2)多个倾角下拟合残差符合随机 特征,不同倾角下差异不大,峰峰值均小于 0.3 mV (±60 μg,记标度因数为5 V/g)。

总之,IMU 倾斜姿态误差存在非线性,近垂直处较明 显,大大降低长直井段的姿态测量精度,影响准确达到深 部钻探的目的层。

IMU 非线性误差的融合补偿 2

针对非线性误差,刘建光等^[18]、Zhang 等^[19]研究重力 场多点测量,张梦琪^[20]将重力多点翻转从铅垂面拓展至倾 斜面,Guo 等^[21]对倾斜平面进行数据插值拟合,提供各倾 角校正参数。据此,本节对倾斜翻转开展参数优化研究。

2.1 基于倾斜多点翻转的参数优化

将 IMU 置于重力场进行倾斜面翻转测试,此时 IMU 理论输出信号满足.

$$\begin{cases} f_x(\theta_j) = \sin(I_c + \varphi_x) \left[b_x + K_x \cos(\theta_j + \delta_x) \right] \\ f_y(\theta_j) = \sin(I_c + \varphi_y) \left[b_y + K_y \sin(\theta_j + \delta_y) \right] \\ f_z(\theta_j) \approx b_z + K_z \left[-\sin(I_c) \cos(\theta_j + \delta_z) \varphi_z + \cos(I_c) \right] \end{cases}$$
(4)

式中: $K_{*}/K_{*}, b_{*}/b_{*}$ 依次表示 IMU 三轴的标度因数 及偏置; $\delta_x/\delta_x, \varphi_x/\varphi_y/\varphi_z$ 分别表示投影在旋转面和铅 垂面的三轴失衡角(综合考虑未对准,非正交和角度设置 误差); Ι. 表示翻转面与铅垂面的夹角; θ. 表示相对于初 始位置的翻转角度序列。基于最小二乘最大似然估计 (least-squares maximum likelihood estimation, LS-ML)的优 化技术可给出误差参数修正量[14]:

$$\sum_{k=1}^{m} X_{ik} \Delta \boldsymbol{\alpha} = Y_{i} \quad i = 1, \cdots, m$$

$$\boldsymbol{\alpha} = (\alpha_{1}, \cdots, \alpha_{i}, \cdots, \alpha_{m}) \quad (5)$$

$$\boldsymbol{X}_{ik} = \sum_{j=1}^{n} \left. \frac{1}{w_{j}^{2}} \frac{\partial f(\theta_{j}, \alpha)}{\partial \alpha_{i}} \frac{\partial f(\theta_{j}, \alpha)}{\partial \alpha_{k}} \right|_{\alpha = \alpha_{0}}$$

$$\boldsymbol{Y}_{i} = \sum_{j=1}^{n} \left. \frac{\left[M_{ind,j} - f(\theta_{j}, \alpha) \right]}{w_{i}^{2}} \frac{\partial f(\theta_{j}, \alpha)}{\partial \alpha_{k}} \right|_{\alpha = \alpha_{0}}$$

 $\partial \alpha_i$

式中: X_{ik} 组成 m 阶方阵; Y_{i} 组成 m 维列向量; α 和 $\Delta \alpha$ 为 误差参数估值及对应修正量; $M_{ind,i}$ 和 $f(\theta_i, \alpha)$ 为n个翻 转角度中第 j 位置输出的实测值和理论值, w; 表示此时 实测值精度的权重系数。以 x 轴为例,若 EF+PF 给出初 值 $\alpha_0 = (b_x, K_x, \delta_x, \varphi_x)_\circ$ m = 4 时,可根据式(5)和(6) 进行参数寻优:

 w_i^2

 $\Delta \boldsymbol{\alpha} = (\Delta \alpha_1, \Delta \alpha_2, \Delta \alpha_3, \Delta \alpha_4) = (\hat{b}_x, \hat{K}_x, \hat{\delta}_x, \hat{\varphi}_x)$ (7)在倾斜面内进行重力场翻转测试,得到特定井斜 1 下的参数修正量 $\Delta \alpha = (\hat{b}_{\mu}, \hat{K}_{\mu}, \hat{\delta}_{\mu}, \hat{\varphi}_{\mu})$,利用该修正量即 可完成对误差模型的更新:

 $\hat{S} =$

$$\begin{bmatrix} S_{xx} + \hat{K}_{x} & S_{yx} + \hat{\varphi}_{y}S_{yz} - \hat{\delta}_{y} & S_{zx} - \hat{\varphi}_{z}S_{zy} + \hat{\varphi}_{z} \\ S_{xy} - \hat{\varphi}_{x}S_{xz} + \hat{\delta}_{x} & S_{yy} + \hat{K}_{y} & S_{zy} + \hat{\delta}_{z}S_{zx} \\ S_{xz} + \hat{\varphi}_{x}S_{xy} & S_{yz} - \hat{\varphi}_{y}S_{yx} & S_{zz} + \hat{K}_{z} \end{bmatrix}$$
$$\hat{\boldsymbol{b}} = \begin{bmatrix} b_{x} + \hat{b}_{x}, b_{y} + \hat{b}_{y}, b_{z} + \hat{b}_{z} \end{bmatrix}^{\mathrm{T}}$$
(8)

利用倾斜重力场翻转来优化误差模型参数,可近似 补偿该井斜下的非线性误差。理论上,标度因数、偏置受 其非线性影响,随井斜改变发生规律性变化^[14,20]。参照 1.2 节所述的 Monto-Carlo 仿真,不同井斜下误差参数进 行统计归纳,并利用参数估值的均值进行曲线拟合,结果 如图5所示。

重力场多点翻转参数拟合的数值仿真结果 图 5 Fig. 5 Numerical simulation results of multipoint tumble test

339

鉴于各井斜翻转优化的参数拟合结果,其回归分析 R²证明可借助正弦、余弦函数对标度因数、偏置近似插 值,补偿其非线性。从图 5 看出,全姿态倾斜误差的非线 性得到一定补偿,但仍然需要进一步提高精度,特别是近 垂直处的非线性较强,还可融合全姿态均衡技术进一步 消除非线性误差及其周期性^[22]。

2.2 基于等角距均衡策略的翻转补偿

根据式(3)设误差矩阵的估计值与其标称值之间存 在误差 dS,其对重力三轴分量产生的影响可表示为:

$$\begin{bmatrix} dG_x \\ dG_z \\ dG_z \end{bmatrix} = d\mathbf{S} \cdot \mathbf{G} = \begin{bmatrix} dS_{xx} & dS_{yx} & dS_{zx} \\ dS_{xy} & dS_{yy} & dS_{zy} \\ dS_{xz} & dS_{yz} & dS_{zz} \end{bmatrix} \cdot \begin{bmatrix} G_x \\ G_y \\ G_z \end{bmatrix}$$
(9)

给定任意姿态下测量值 $E = \{E_j\}_{j=1,\dots,N}, dS$ 表示为: $dS = d(E_{3\times n} - \operatorname{diag}(b_x, b_x, b_z) \cdot \mathbf{1}_{3\times n})$ ·

$$\boldsymbol{G}_{3\times n}(I,T)]^{-1} = d\hat{\boldsymbol{E}}_{3\times n}[\boldsymbol{G}_{3\times n}(I,T)]^{-1}$$
(10)

式中: $d\hat{E}$ 表示传感器输出的非线性误差。可见, dS 不仅 受输出误差影响, 还与包含非线性的校正采样位置的选 择有关。除了确保采样点的数量和其不相关性, Zhang 等^[23]指出冗余的对称采样点可以抑制模型忽略的 额外误差影响。倾斜多点翻转依据井斜对输出进行区分 并补偿。同一井斜区间, 传感器表现出相似的非线性特 性。进一步来看, 式(10) 表明, dS 和 $d\hat{E}$ 之间仍呈与翻 转角度 T 相关的周期性规律。

在等距、对称分布的前提下,一种等角距均衡校正策略被提出。该策略依据随 T 变化的正弦输出特性,将 360°翻转分为 4 个象限。每个象限分别取其中点 (I_c, T_r) ,及距中点对称的耦合点 (I_c, T_a) 和 (I_c, T_b) 。全 周期内共计 12 个方位,满足 $T_n = (n-0.5) \cdot a_0(a_0 = 30^\circ, n=1, 2, ..., 11, 12)$ 。在倾斜多点翻转优化的基础上, 该方法对工具面角进行区分,以更准确地考虑误差参数。

考虑到各象限校正点的完全对称,以第1象限为例, 此时 dS 可表示为:

$$dS = \begin{bmatrix} d\hat{E}_{x1} & d\hat{E}_{x2} & d\hat{E}_{x3} \\ d\hat{E}_{y1} & d\hat{E}_{y2} & d\hat{E}_{y3} \\ d\hat{E}_{z1} & d\hat{E}_{z2} & d\hat{E}_{z3} \end{bmatrix} \cdot \begin{bmatrix} G_{x1} & G_{x2} & G_{x3} \\ G_{y1} & G_{y2} & G_{y3} \\ G_{z1} & G_{z2} & G_{z3} \end{bmatrix}^{-1} (11)$$

$$\mathfrak{P} \hat{E} \hat{E}_{z1} = \hat{E}_{z3} = G_{a}$$

$$\begin{cases} G_{x1} = G_{y3} = G_{a} \\ G_{x3} = G_{y1} = G_{b} \\ G_{x2} = G_{y2} = G_{c} \\ G_{z1} = G_{z2} = G_{z3} = G_{z} \end{cases}$$

$$\begin{cases} d\hat{E}_{x1} = d\hat{E}_{y3} = d\hat{E}_{a} \\ d\hat{E}_{x3} = d\hat{E}_{y1} = d\hat{E}_{b} \\ d\hat{E}_{x2} = d\hat{E}_{y2} = d\hat{E}_{c} \\ d\hat{E}_{z1} = d\hat{E}_{z2} = d\hat{E}_{z3} = d\hat{E}_{z} \end{cases}$$

$$(12)$$

于是有:

$$\begin{cases} dS_{xx} = dS_{yy} = (\rho_{a} - \rho_{r}) d\hat{E}_{a} + \\ (\rho_{b} - \rho_{a}) d\hat{E}_{r} + (\rho_{r} - \rho_{b}) d\hat{E}_{b} \\ dS_{xy} = dS_{yx} = (\rho_{r} - \rho_{b}) d\hat{E}_{a} + \\ (\rho_{b} - \rho_{a}) d\hat{E}_{r} + (\rho_{a} - \rho_{r}) d\hat{E}_{b} \\ dS_{xz} = dS_{yz} = 0 \end{cases}$$

$$\begin{cases} dS_{zx} = dS_{zy} = -\rho_{r} d\hat{E}_{a} + (\rho_{a} + \rho_{b}) d\hat{E}_{r} - \\ \rho_{r} d\hat{E}_{b} \leq \rho_{r} (2d\hat{E}_{r} - d\hat{E}_{a} - d\hat{E}_{b}) = \\ \frac{G_{r}}{G_{z}} \frac{2d\hat{E}_{r} - d\hat{E}_{a} - d\hat{E}_{b}}{G_{a} + G_{b} - 2G_{r}} \end{cases}$$

$$(14)$$

$$| dS_{zx} | = | dS_{zy} | \ge \frac{\sqrt{2} \tan I_{c}}{2} \frac{2d\hat{E}_{r} - d\hat{E}_{a} - d\hat{E}_{b}}{2G_{r} - G_{a} - G_{b}}$$

式中: $\rho_a = G_a/|G|, \rho_b = G_b/|G|, \rho_r = G_r/|G|$ 。根据 式(13) 和(14) 近似量化的 $dS: dS_{xz}/dS_{yz}$ 为0, $dS_{xx}/dS_{yy}/dS_{yx}/dS_{yx}$ 的系数和为0,其数值近似0,这表明 对于x/y轴非线性误差被基本补偿;z轴 dS_{xx}/dS_{yy} 和 dS_{zz} 仍受 $d\hat{E}$ 的影响,且该影响随井斜增大而逐步递增。总体 来说,对于固定井斜 I_c 的翻转数据,利用等角距均衡策略 进行分象限的误差参数辨识,可进一步降低近垂直井段 非线性误差的影响。

3 实验验证

利用高精度三轴转台(如图 6 所示),对 IMU 标定效 果展开实验验证,IMU 的各项参数如表 2 所示。

图 6 实验设备 Fig. 6 The experiment equipment

数据采样间隔设定为1s。姿态调整后等待信号稳定,连续采集8s数据,并以秒为单位对数据进行平滑滤波,作为该姿态下的8个采样点。经初始调平、寻北操作后,标定实验以转台内置编码器的姿态信息作为参考。实验数据从绕不同井斜角的360°工具面角旋转中收集。利用三轴转台将每组实验的井斜角*I*。依次设置为

表 2 实验设备参数指标

1.800°、3.006°、4.806°、10.008°、30.006°和 59.994°、以 T=5°为间隔完成360°旋转。

同时,实验依照第2节所述校正策略旋转三轴转台, 获得椭球拟合和平面拟合所需数据。在此基础上,处于 不同井斜的每组待标定数据均进行倾斜多点翻转,以完 成该井斜误差参数优化。

最后,再根据T将翻转数据分为4个象限,分别完成 等角距均衡补偿。

几种方法的测量效果对比示例如图 7 所示,其姿态

图 7 基于各校正策略的测斜仪倾斜测量结果

解算分别来源如下:1)IMU 原始数据;2)EF+PF 校正数据;3)倾斜翻转参数优化数据;4)等角距均衡策略补偿数据。为保证各图最大可视化,其纵轴幅值有变化。

对比 EF+PF 校正和未采取校正的曲线可知,1)未校 正时,*dI*和*dT*的特征规律与 Monte-Carlo 仿真模拟一致, 均随工具面变化呈现周期性误差;*dI*随倾斜变化基本不 变;*dT*随井斜变小而非线性增大,近垂直处误差很大。 2)EF+PF校正后,*dI*和*dT*的幅值得到减小,非线性导致 的周期性倾斜误差仍然存在。

对比翻转优化和 EF+PF 校正的曲线可知,1) 翻转优化后,各井斜下 dI 和 dT 均大幅削弱, dI 仍远小于 dT。

2)倾斜误差周期性也得到削弱,但仍存在。

对比均衡补偿和翻转优化校正的曲线可知,1)均衡 补偿后,各井斜下 dI 和 dT 均进一步削弱,dI 仍远小于 dT。2)倾斜误差的周期性基本被消除,呈现随机性特征。

表 3 和 4 分别为不同校正策略井斜角误差 dI 和工 具面角误差 dT 的统计结果,采用不同井斜下的平均值和 标准差(1σ,粗体)进行定量评价,并列出较其他策略的 相对变化。受限于校验设备精度和多次实验操作误差, 测斜仪并不总是与三轴转台对准。转台指示的角度标称 值相对于测斜仪真值有偏移,解算的倾斜角度均值存在 一定偏差。

	表 3 各校正策略井斜误差统计结果	
Table 3	Statistical results of axial tilt errors for calibration strategie	s

井斜 /(°)	未校正	EFPF 校正		翻转伊	忙化	均衡补偿		
	误差/(°)	误差/(°)	较未校正的 相对变化%	误差/(°)	较 EFPF 校正 的相对变化%	误差/(°)	较 EFPF 校正 的相对变化%	较翻转优化 的相对变化%
1.800	0.041 7±0.022 3	0.029 4± 0.006 0	-29.5, -73. 1	-0.000 2±0.001 6	-99.3, -73.3	-0.000 2±0.000 5	-99.3, -91.7	0, -68.8
3.006	0.041 0±0.021 3	0.052 7±0.010 7	+28.5, -49.8	-0.000 6±0.001 9	-98.9, -82.8	0.000 1±0.000 5	-99.8, -95.3	-83.3, -73. 7
4.806	0.044 5± 0.020 7	0.055 5±0.010 9	+24.7, -47.3	-0.000 5±0.002 7	-99.1, -75.2	-0.000 2±0.000 6	-99.6, -94.5	-60.0, -77.8
10.008	0.070 5±0.032 8	0.067 0±0.014 9	-5.0, -54.6	-0.000 3±0.006 1	-99.6, -59.1	0.000 3±0.000 8	-99.6, -94.6	0, -86.9
30.006	0.080 3±0.036 8	0.072 6±0.017 8	-9.6, -51.6	0.000 1±0.015 0	-99.9, -15.7	-0.000 1± 0.001 6	-99.9, -91.0	0, -89.3
59. 994	0.037 4± 0.030 9	0.036 0±0.018 1	-3.7, -41.4	0.000 1±0.016 2	-99.7, -10.5	0.000 2±0.001 6	-99.4, -91.2	+100, -90.1

注:dI(平均值±标准差)

表 4 各校正策略工具面误差统计结果

Table 4	Statistical	results of	of 1	tool	face	errors	for	calibration	strategies

井斜 /(°)	未校正 EFPF 校		。 交正 翻转优		尤化		均衡补偿	
	误差/(°)	误差/(°)	较未校正的 相对变化/%	误差/(°)	较 EFPF 校正 的相对变化%	误差/(°)	较 EFPF 校正 的相对变化%	较翻转优化 的相对变化%
1.800	-0.626 6±0.870 1	-0. 542 8±0. 192 8	-13.4, -77.8	-0.008 1±0.039 4	-98.5, -79.6	-0.002 1±0.014 7	-99.6, -92.4	-74.1, -62.7
3.006	-0. 372 1±0. 501 9	-0.260 1±0.222 7	-30.1, -55.6	-0.014 4±0.028 8	-94.5, -87.1	-0.002 2±0.009 5	-99.2, -95.7	-84.7, -67.0
4.806	-0. 232 1± 0. 315 1	-0. 182 7±0. 144 2	-21.3, -54.2	-0.019 0±0.020 7	-89.6, -85.6	-0.001 6±0.005 9	-99.1, -95.9	-91.6, -71.5
10.008	0.043 4± 0.234 4	-0.014 2±0.139 4	-67.3, -40.5	0.001 9± 0.034 5	-86.6, -75.3	-0.001 0±0.007 4	-93.0, -94. 7	-47.4, -78.6
30.006	0.031 3± 0.120 4	-0.026 4±0.089 8	-15.7, -25.4	0.000 3± 0.034 3	-98.9, -61.8	0.001 8±0.006 5	-93.2, -92.8	+500, -81.0
59. 994	0.052 5±0.093 2	-0.005 2±0.076 8	-90.1, -17.6	-0.000 2±0.034 9	-96.2, -54.6	0.002 5±0.005 1	-51.9, -93.4	+1 150, -85.4

注:dT (平均值±标准差)

由表 3 和 4 可知,1) EF+PF 校正后, dI 均值有减小 也有增大, dI 标准差至少减小 41.4%; 而 dT 均值和标准 差分别至少减小 13.4% 和 17.6%。2) 翻转优化后, dI 和 dT 的均值和标准差都显著减小, dI 均值至少减小 98.9%, 标准差减小 10.5%~82.8%; dT 均值至少减小 89.6%, 标准差减小 54.6%~87.1%; 各个井斜下 dI 和 dT 的均值和标准差都在同一数量级。3) 均衡补偿后, 全倾 斜姿态精度更高、更均衡, 小井斜下 dI 和 dT 的均值和标 准差进一步减小,实现了全倾斜姿态测量的等高精度。

相对与 EF+PF 校正,全姿态下翻转优化方法的 dI 至少降低了 69.9%, dT 至少降低了 57.2%;均衡补偿方 法的 dI 至少降低了 96.7%, dT 至少降低了 90.7%。

近垂直姿态下,基于翻转优化方法的 dI<±0.003 2°, dT<±0.043 2°;基于均衡补偿方法的 dI<±0.000 8°, dT<±0.016 8°(1σ 估计)。

综上可知,多点翻转优化较 EF+PF 方法有效补偿倾

斜误差的非线性,可同时准确地估计δ₂和φ₂,但随着井 斜角增加,z轴误差将逐步导致优化效果降低;等角距均 衡校正能消除周期性误差,同时也大大减小倾斜姿态误 差,削弱其非线性,在全姿态范围内误差基本在同一数量 级,获得等高测量精度;通过增加部分校正工作量,可实 现长直井段的等高精度测量。

4 结 论

IMU 姿态误差的非线性不仅受标度因数、偏置、未对 准/非正交影响,还随井斜变化,影响模型参数估计。通 过翻转优化和均衡补偿进一步修正加速度计模型参数, 可将一阶模型的未建模误差混叠到其线性参数的估计 中。提出的方法无需进行振动或离心测试,在 EF+PF 校 正的基础上就可补偿系统非线性误差。

仿真和实验表明,估计的标度因数及偏置与井斜之间基本符合单调变化规律,可根据典型标定结果完成井下工具姿态误差补偿。提出的倾斜翻转优化和均衡策略算法能有效降低 EF+PF 补偿后的非线性姿态误差;全姿态下,最终解算的井斜角误差至少降低了 96.7%,工具面角误差至少降低了 90.7%。

参考文献

 [1] 邓祎昕, 郭华玲, 郑宾, 等. 基于小波模糊阈值去噪 方法在 MEMS 加速度计去噪中的应用[J]. 国外电子 测量技术, 2021, 40(8): 134-138.
 DENG Y X, GUO H L, ZHENG B, et al. Application of

wavelet fuzzy threshold denoising method in MEMS accelerometer denoising[J]. Foreign Electronic Measurement Technology, 2021, 40(8): 134-138.

[2] 王尧, 窦亮, 贺伟, 等. MEMS 惯性姿态模块批量自动化标定系统设计[J]. 电子测量技术, 2020, 43(7): 161-166.

WANG Y, DOU L, HE W, et al. Design of batch automatic calibration system for MEMS inertial attitude module[J]. Electronic Measurement Technology, 2020, 43(7): 161-166.

[3] 高亢, 陈希军, 任顺清. MEMS 加速度计组合在分度 头上的标定方法[J]. 导航定位与授时, 2016, 3(3): 74-83.

> GAO K, CHEN X J, REN SH Q. Calibration method for MEMS accelerometers based on dividing head [J]. Navigation Positioning and Timing, 2016, 3(3): 74-83.

 [4] 张顺星,周吴,卢鹏,等.考虑横向灵敏度的三轴加速 度传感器标定方法研究[J]. 仪器仪表学报,2021, 42(4):33-40.

ZHANG SH X, ZHOU W, LU P, et al. Research on the calibration method of triaxial acceleration sensor with

transverse sensitivity [J]. Chinese Journal of Scientific Instrument, 2021, 42(4): 33-40.

 [5] 徐冠华,何闻,傅建中,等.用于加速度计静态标定的精密倾斜平台[J].仪器仪表学报,2016,37(11): 2452-2458.

XU G H, HE W, FU J ZH, et al. Precision tilting platform used for static calibration of accelerometers [J]. Chinese Journal of Scientific Instrument, 2016, 37(11): 2452-2458.

- [6] 程为彬,甘源滢,程贤箬,等.垂直导向钻井工具安装误差的单象限校正[J]. 仪器仪表学报,2018,39(6):41-47.
 CHENG W B, GAN Y Y, CHENG X R, et al. Single quadrant correction of installation error for vertical steering drilling tool[J]. Chinese Journal of Scientific Instrument, 2018, 39(6):41-47.
- [7] XU T X, XU X, XU D CH, et al. A novel calibration method using six positions for MEMS triaxial accelerometer[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1002211.
- [8] SUN Y F, XU X. Calibration of MEMS triaxial accelerometers based on the maximum likelihood estimation method [J]. Mathematical Problems in Engineering, 2020, 33:4617365.
- [9] 鹿珂珂,刘陵顺,寇昆湖,等.不依赖精密转台的 MEMS-IMU误差标定补偿方法[J]. 仪器仪表学报, 2022,43(4):129-136.
 LUKK,LIULSH,KOUKH, et al. MEMS-IMU error calibration compensation method independent of precision turntable[J]. Chinese Journal of Scientific Instrument, 2022,43(4):129-136.
- [10] MA T SH, CHEN P, ZHAO J. Overview on vertical and directional drilling technologies for the exploration and exploitation of deep petroleum resources [J]. Geomechanics and Geophysics for Geo-energy and Geo-Resources, 2016, 2(4): 365-395.
- [11] REN Y, WANG Y D, WANG M J, et al. A measuring system for well logging attitude and a method of sensor calibration[J]. Sensors, 2014, 14(5): 9256-9270.
- [12] 徐仕会.加速度计交叉耦合系数高精度标定[J].指 挥控制与仿真,2016,38(3):136-139.
 XU SH H. Precise calibration for accelerometer cross coupling coefficient [J]. Command Control and Simulation, 2016, 38(3): 136-139.
- [13] WANG Z H, CHENG X H, FU J B. Optimized multiposition calibration method with nonlinear scale factor for inertial measurement units[J]. Sensors, 2019, 19(16): 19163568.

- Institute of Electrical and Electronics Engineers. IEEE standard specification format guide and test procedure for linear, single-axis, non-gyroscopic accelerometers [S]. 2019.
- [15] 程为彬, 胡少兵, 张夷非, 等. 旋转导向钻井工具近 垂直姿态校正矩阵误差的等角距均衡校正[J]. 仪器 仪表学报, 2022,43(6):19-28.

CHENG W B, HU SH B, ZHANG Y F, et al. Equiangular interval balance correction of correction matrix error for rotary steering drilling tool under nearvertical position [J]. Chinese Journal of Scientific Instrument, 2022, 43(6): 19-28.

- [16] LIU Z W, SONG J CH. A low-cost calibration strategy for measurement-while-drilling system [J]. IEEE Transac-tions on Industrial Electronics, 2017, 65(4): 3559-3567.
- [17] BEITIA J, CLIFFORD A, FELL C, et al. Quartz pendulous accelerometers for navigation and tactical grade systems [C]. 2015 DGON Inertial Sensors and Systems Symposium (ISS). IEEE, 2015:1-20.
- [18] 刘建光,底青云,张文秀.基于多测点分析法的水平井
 高精度磁方位校正方法[J].地球物理学报,2019,62(7):2759-2766.

LIU J G, DI Q Y, ZHANG W X. High precision magnetic azimuth correction of horizontal well by multistation analysis [J]. Chinese Journal of Geophysics, 2019, 62(7): 2759-2766.

- [19] ZHANG X, ZHOU CH L, CHAO F, et al. Low-cost inertial measurement unit calibration with nonlinear scale factors[J]. IEEE Transactions on Industrial Informatics, 2022, 18(2): 1028-1038.
- [20] 张梦琪. 面向旋转式重力梯度仪的高精度加速度计测 试方法研究[D]. 武汉:华中科技大学, 2021.
 ZHANG M Q. Study on test methods of high-precision accelerometers for a rotating accelerometer gravity

gradiometer [D]. Wuhan: Huazhong University of Science and Technology, 2021.

- [21] GUO T, CHENG W B, ZHANG Y F, et al. Azimuth calibration based on equal angle balance correction algorithm for measurement-while-drilling system [J]. Measurement, 2024, 224: 113891.
- [22] CHENG W B, HU SH B, ZHANG M J, et al. Near-vertical attitude determination based on balance correction [J].

IEEE Transactions on Instrumentation and Measurement, 2021, 70(9508009):1-9.

[23] ZHANG H L, WU Y X, WU W Q, et al. Improved multi-position calibration for inertial measurement units[J]. Measurement Science and Technology, 2010, 21(1): 015107.

作者简介

张夷非,2017年于长江大学获得学士学位,2021年于长江大学获得硕士学位,现为 长江大学博士研究生,主要研究方向为井下 姿态测量和智能控制。

E-mail:201872340@ yangtzeu. edu. cn

Zhang Yifei received his B. Sc. degree from Yangtze University in 2017, and M. Sc. degree from Yangtze University in 2021. Now he is a Ph. D. candidate at Yangtze University. His main research interests include downhole attitude measurement and intelligent control.

程为彬(通信作者),1991年于长江大 学获得学士学位,1994年在石油大学(北 京)获得硕士学位,2007年在西安理工大学 获得博士学位,现为长江大学教授,主要研 究方向为油气井下智能测控技术。

 $\operatorname{E-mail:wbcheng}@$ yangtzeu. edu. cn

Cheng Weibin (Corresponding author) received his B. Sc. degree from Yangtze University in 1991, M. Sc. degree from China University of Petroleum in 1994, and Ph. D. degree from Xi' an University of Technology in 2007. He is currently a professor at Yangtze University. His main research interests include intelligent measurement and control for downhole oil and gas.

郑恭明,2003年于中国人民解放军重庆 通信学院获得学士学位,2009年在成都理工 大学获得硕士学位,2016年在长江大学获得 博士学位,现为长江大学副教授,主要研究 方向为人工智能和物联网技术。 E-mail:

Zheng Gongming received his B. Sc. degree from Chongqing University of Communications in 2003, M. Sc. degree from Chengdu University of Technology in 2009, and Ph. D. degree from Yangtze University in 2016. He is currently an associate professor at Yangtze University. His main research interests include artificial Intelligence and internet of Things Technology.