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Abstract:Structural
 

health
 

monitoring
 

is
 

widely
 

utilized
 

in
 

outdoor
 

environments,
 

especially
 

under
 

harsh
 

conditions,
 

which
 

can
 

introduce
 

noise
 

into
 

the
 

monitoring
 

system.
 

Therefore,
 

designing
 

an
 

effective
 

denoising
 

strategy
 

to
 

enhance
 

the
 

performance
 

of
 

guided
 

wave
 

damage
 

detection
 

in
 

noisy
 

environments
 

is
 

crucial.
 

This
 

paper
 

introduces
 

a
 

local
 

temporal
 

principal
 

component
 

analysis
 

(PCA)
 

reconstruction
 

approach
 

for
 

denoising
 

guided
 

waves
 

prior
 

to
 

implementing
 

unsupervised
 

damage
 

detection,
 

achieved
 

through
 

novel
 

autoencoder-based
 

reconstruction.
 

Experimental
 

results
 

demonstrate
 

that
 

the
 

proposed
 

denoising
 

method
 

significantly
 

enhances
 

damage
 

detection
 

performance
 

when
 

guided
 

waves
 

are
 

contaminated
 

by
 

noise,
 

with
 

SNR
 

values
 

ranging
 

from
 

10
 

to
 

-5
 

dB.
 

Following
 

the
 

implementation
 

of
 

the
 

proposed
 

denoising
 

approach,
 

the
 

AUC
 

score
 

can
 

elevate
 

from
 

0. 65
 

to
 

0. 96
 

when
 

dealing
 

with
 

guided
 

waves
 

corrputed
 

by
 

noise
 

at
 

a
 

level
 

of
 

-5
 

dB.
 

Additionally,
 

the
 

paper
 

provides
 

guidance
 

on
 

selecting
 

the
 

appropriate
 

number
 

of
 

components
 

used
 

in
 

the
 

denoising
 

PCA
 

reconstruction,
 

aiding
 

in
 

the
 

optimization
 

of
 

the
 

damage
 

detection
 

in
 

noisy
 

conditions.
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基于自编码器模型在复杂噪声环境中无监督式
结构损伤检测算法的改进∗
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(1. 佛罗里达大学电子信息与计算机工程学院　
 

盖恩斯维尔　 32611;
 

2. 天普大学电子信息与计算机工程学院　
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3. 天津大学精密仪器与光电子工程学院　 天津　 300072)

摘　 要:结构健康监测广泛应用于户外环境中,尤其是恶劣条件中的结构监测。 这些恶劣的运行环境会使监测系统受到噪声的

干扰。 因此,设计有效的降噪策略以增强在噪声环境中利用导波进行损伤结构检测的性能至关重要。 介绍了一种基于时序主

成分分析(PCA)重构信号的方法用于降低波导的噪声,并将降噪后的信号与基于改进后的自编码器重建的模型来实现无监督

损伤检测。 对该降噪算法以及基于自编码器的无监督损伤检测模型的有效性在信噪比 10
 

dB 降到-5
 

dB 的环境中进行了测

试。 实验结果表明,所提出的降噪方法能够显著提高噪声环境中损伤检测性能,在信噪比为-5
 

dB 的噪声环境中实现 AUC
 

score
 

从 0. 65 提升到 0. 96。 与此同时,还提供了用于降噪的 PCA 重构信号中的主成分选择的策略,用于实现优化降噪以及无

监督的损伤检测。
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0　 Introduction

　 　 A
 

large
 

scale
 

of
 

civil
 

infrastructure
 

and
 

mechanical
 

structures,
 

face
 

various
 

external
 

forces
 

over
 

their
 

service
 

life.
 

Given
 

these
 

risks
 

and
 

fueled
 

by
 

the
 

progress
 

in
 

sensing
 

technology,
 

there’ s
 

a
 

growing
 

focus
 

on
 

utilizing
 

structural
 

health
 

monitoring
 

( SHM)
 

technique
 

for
 

proactively
 

detect
 

damage
 

and
 

avert
 

disasters
 

in
 

large-scale
 

infrastructures[1] .
 

Within
 

the
 

realm
 

of
 

SHM
 

approaches,
 

ultrasonic
 

guided
 

waves
 

have
 

been
 

extensively
 

utilized
 

due
 

to
 

a
 

series
 

of
 

advantages,
 

including
 

travel
 

long
 

distances
 

without
 

significant
 

loss
 

of
 

energy
 

enabling
 

the
 

assessment
 

of
 

large
 

structures
 

through
 

a
 

single
 

point
 

of
 

access,
 

and
 

the
 

exceptional
 

sensitivity
 

of
 

guided
 

waves
 

to
 

irregularities
 

like
 

cracks[2] ,
 

and
 

delamination[3]
 

allowing
 

for
 

the
 

prompt
 

identification
 

of
 

potential
 

defects,
 

preventing
 

them
 

from
 

escalating
 

into
 

more
 

critical
 

problems[4] .
 

However,
 

an
 

inherent
 

challenge
 

in
 

utilizing
 

guided
 

waves
 

for
 

structural
 

health
 

monitoring
 

is
 

the
 

intricate
 

nature
 

of
 

the
 

collected
 

signal[5] .
 

Typically,
 

these
 

guided
 

waves
 

are
 

dispersive,
 

meaning
 

their
 

waveform
 

evolves
 

as
 

they
 

travel[2] ,
 

and
 

encompass
 

multiple
 

modes
 

and
 

reflections,
 

complicating
 

the
 

task
 

of
 

discerning
 

minor
 

reflections
 

triggered
 

by
 

variations,
 

such
 

as
 

defects,
 

in
 

the
 

complex
 

guided
 

wave
 

signals[6] .
 

In
 

addition,
 

ultrasonic
 

guided
 

waves
 

are
 

also
 

easily
 

distorted
 

by
 

environmental
 

and
 

operational
 

condition
 

(EOC)
 

variations[6] .
 

Such
 

variations
 

can
 

modify
 

the
 

travel
 

of
 

guided
 

waves,
 

possibly
 

obscuring
 

actual
 

damage
 

or
 

resulting
 

in
 

erroneous
 

indications
 

of
 

damage[7] .
To

 

adapt
 

guided
 

wave-based
 

damage
 

detection
 

to
 

complex
 

variations
 

in
 

environmental
 

and
 

operating
 

conditions,
 

researchers
 

have
 

explored
 

unsupervised
 

techniques
 

for
 

damage
 

detection
 

that
 

do
 

not
 

rely
 

on
 

prior
 

measurements
 

from
 

damaged
 

structures.
 

Motivated
 

by
 

the
 

impressive
 

advance-
ments

 

in
 

deep
 

learning,
 

a
 

novel
 

strategy
 

that
 

leverages
 

an
 

autoencoder-based
 

reconstruction
 

method
 

for
 

detecting
 

damage
 

is
 

proposed.
 

Traditionally,
 

anomaly
 

detection
 

methods
 

based
 

autoencoders
 

involve
 

training
 

the
 

network
 

to
 

learn
 

normal
 

behavior,
 

such
 

as
 

the
 

patterns
 

of
 

guided
 

waves
 

under
 

intact
 

conditions.
 

Subsequently,
 

anomaly
 

detection
 

is
 

executed
 

by
 

assessing
 

whether
 

the
 

test
 

data
 

can
 

be
 

accurately
 

reconstructed
 

by
 

the
 

trained
 

model
 

or
 

not[8-9] .
 

Consequently,
 

guided
 

waves
 

that
 

cannot
 

be
 

effectively
 

reconstructed
 

by
 

the
 

trained
 

autoencoder
 

model
 

are
 

identified
 

as
 

anomaly
 

data,
 

indicating
 

potential
 

damage
 

or
 

irregular
 

environmental
 

variations.
 

In
 

guided
 

wave-based
 

monitoring,
 

Abbassi
 

et
 

al. [10]
 

employed
 

guided
 

waves
 

from
 

a
 

pristine
 

structure
 

under
 

controlled
 

temperature
 

variations
 

to
 

train
 

the
 

autoen-
coder.

 

They
 

subsequently
 

evaluated
 

its
 

performance
 

using
 

test
 

data
 

containing
 

guided
 

waves
 

from
 

both
 

healthy
 

and
 

damaged
 

structures.
 

Similarly,
 

Lee
 

et
 

al. [9]
 

trained
 

a
 

deep
 

autoencoder
 

using
 

guided
 

waves
 

from
 

an
 

intact
 

composite
 

plate
 

and
 

achieved
 

fatigue
 

damage
 

detection
 

by
 

analyzing
 

the
 

reconstruction
 

error
 

statistics
 

under
 

a
 

laboratory-controlled
 

temperature.
 

Despite
 

the
 

effectiveness
 

of
 

these
 

autoencoder-
based

 

damage
 

detection
 

methods
 

in
 

experimental
 

settings,
 

their
 

performance
 

in
 

detecting
 

stable
 

long-term
 

damage
 

under
 

uncontrolled
 

environments
 

with
 

irregular
 

variations
 

remains
 

untested[9-11] .
 

Additionally,
 

the
 

autoencoder
 

reconstruction-
based

 

model
 

mentioned
 

above
 

necessitates
 

a
 

comprehensive
 

collection
 

of
 

historical
 

guided
 

waves
 

as
 

training
 

data.
 

The
 

measurement
 

conditions
 

of
 

this
 

training
 

data
 

need
 

to
 

encompass
 

those
 

of
 

the
 

evaluation
 

data
 

to
 

minimize
 

false
 

alarms[8-9] .
 

However,
 

gathering
 

such
 

data
 

poses
 

challenges
 

as
 

it
 

requires
 

long-term
 

monitoring
 

to
 

cover
 

various
 

environ-
mental

 

conditions,
 

rendering
 

these
 

methods
 

less
 

practical
 

in
 

real-world
 

scenarios[11] .
In

 

response
 

to
 

this
 

challenge,
 

our
 

previous
 

research[12]
 

devised
 

a
 

novel
 

approach
 

to
 

train
 

autoencoders
 

without
 

the
 

need
 

for
 

collecting
 

historical
 

guided
 

waves
 

as
 

training
 

data.
 

Instead,
 

the
 

model
 

is
 

directly
 

trained
 

using
 

evaluation
 

data.
 

This
 

method
 

capitalizes
 

on
 

the
 

bias
 

learning
 

property
 

inherent
 

in
 

neural
 

networks,
 

wherein
 

they
 

tend
 

to
 

prioritize
 

learning
 

from
 

large
 

classes
 

while
 

overlooking
 

smaller
 

ones[13] .
 

Consequently,
 

the
 

autoencoder
 

model
 

is
 

inclined
 

to
 

better
 

learn
 

guided
 

waves
 

from
 

regular
 

environmental
 

conditions
 

compared
 

to
 

those
 

from
 

irregular
 

environmental,
 

such
 

as
 

rain
 

and
 

snow,
 

and
 

damage
 

conditions,
 

as
 

guided
 

waves
 

from
 

irregular
 

environments
 

and
 

damage
 

conditions
 

typically
 

exhibit
 

anomalous
 

signals
 

that
 

are
 

underrepresented
 

in
 

the
 

evaluation
 

data.
 

Additionally,
 

this
 

method
 

leverages
 

a
 

local
 

principal
 

component
 

analysis
 

( PCA )
 

reconstruction
 

tech-
nique

 

to
 

aid
 

in
 

distinguishing
 

guided
 

waves
 

from
 

irregular
 

environmental
 

conditions
 

and
 

damage
 

conditions[12] .
 

Conse-
quently,

 

the
 

proposed
 

method
 

achieves
 

unsupervised
 

damage
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detection
 

solely
 

using
 

evaluation
 

data,
 

autonomously
 

distin-
guishing

 

guided
 

waves
 

in
 

the
 

evaluation
 

data
 

originating
 

from
 

regular
 

environments,
 

irregular
 

environments,
 

and
 

damage
 

variations.
However,

 

guided
 

wave
 

structural
 

health
 

monitoring
 

systems
 

are
 

often
 

implemented
 

in
 

extremely
 

harsh
 

environ-
ments[14] .

 

In
 

such
 

conditions,
 

the
 

guided
 

wave
 

measurement
 

system
 

may
 

encounter
 

noise
 

that
 

distorts
 

the
 

measurements
 

over
 

time,
 

adversely
 

affecting
 

damage
 

detection
 

techniques,
 

as
 

discussed
 

in
 

various
 

studies[15] .
 

Consequently,
 

the
 

presence
 

of
 

noise
 

might
 

hinder
 

the
 

novel
 

autoencoder’s
 

ability
 

to
 

accurately
 

reconstruct
 

guided
 

waves.
 

This
 

issue
 

could
 

lead
 

to
 

inaccuracies
 

in
 

the
 

reconstruction
 

coefficients,
 

rendering
 

them
 

ineffective
 

for
 

damage
 

detection.
In

 

practical
 

considerations,
 

it
 

is
 

essential
 

to
 

improve
 

methods
 

for
 

accurately
 

detecting
 

damage
 

within
 

complex
 

and
 

noisy
 

environments.
 

A
 

straightforward
 

approach
 

to
 

accomplish
 

this
 

is
 

to
 

denoise
 

the
 

guided
 

waves
 

before
 

implementing
 

the
 

damage
 

detection
 

process.
 

Regarding
 

denoising
 

signals,
 

it
 

is
 

common
 

to
 

reconstruct
 

signals
 

using
 

sparse,
 

such
 

as
 

wavelets[16]
 

or
 

low-rank
 

representations,
 

such
 

as
 

variational
 

mode
 

decomposition[16]
 

and
 

compressed
 

sensing[17] .
 

This
 

is
 

because
 

noise
 

typically
 

does
 

not
 

align
 

well
 

with
 

these
 

sparse
 

or
 

low-rank
 

structures,
 

leading
 

to
 

its
 

exclusion
 

from
 

the
 

reconstructed
 

signals
 

when
 

employing
 

such
 

representations[18] .
 

Although
 

sparsity
 

and
 

low-rank
 

based
 

methods
 

are
 

widely
 

recognized
 

for
 

their
 

denoising
 

capabilities
 

on
 

structural
 

health
 

monitoring,
 

they
 

often
 

do
 

not
 

constitute
 

the
 

primary
 

focus
 

of
 

research
 

and
 

are
 

seldom
 

thoroughly
 

investigated.
 

Our
 

previous
 

study[19]
 

first
 

explores
 

utilizing
 

temporal
 

correlations
 

of
 

guided
 

waves
 

for
 

denoising
 

through
 

the
 

temporal
 

PCA
 

reconstruction
 

method.
 

This
 

research
 

demonstrated
 

the
 

superior
 

denoising
 

capability
 

of
 

techniques
 

such
 

as
 

the
 

two-dimensional
 

Fourier
 

transform,
 

random
 

projection,
 

and
 

PCA,
 

which
 

exploit
 

temporal
 

correlations
 

among
 

guided
 

waves,
 

over
 

the
 

one-dimensional
 

Fourier
 

transform,
 

which
 

does
 

not
 

utilize
 

these
 

correlations.
 

Among
 

the
 

methods
 

evaluated,
 

PCA-based
 

reconstruction
 

was
 

found
 

to
 

offer
 

the
 

best
 

denoising
 

performance
 

due
 

to
 

its
 

effective
 

leverage
 

of
 

temporal
 

correlations
 

within
 

the
 

guided
 

waves.

1　 Methodology

　 　 As
 

depicted
 

in
 

Fig. 1,
 

the
 

proposed
 

damage
 

detection
 

framework
 

comprises
 

three
 

modules:
 

denoising
 

module,
 

short-term
 

PCA,
 

and
 

autoencoder
 

reconstruction
 

modules.
 

The
 

denoising
 

module
 

serves
 

to
 

clean
 

guided
 

waves
 

by
 

reconstructing
 

them
 

with
 

local
 

temporal
 

PCA.
 

Short-term
 

PCA
 

reconstruction,
 

also
 

accomplished
 

through
 

local
 

temporal
 

PCA,
 

is
 

utilized
 

to
 

identify
 

irregular
 

environmental
 

variations.
 

In
 

contrast,
 

autoencoder-based
 

reconstruction
 

is
 

employed
 

to
 

detect
 

damage
 

variations,
 

complemented
 

by
 

short-term
 

PCA
 

reconstruction.
1. 1　 Local

 

(Temporal)
 

PCA
 

reconstruction
　 　 Both

 

the
 

denoising
 

PCA
 

reconstruction
 

and
 

short-term
 

PCA
 

reconstruction
 

employ
 

local
 

( temporal )
 

PCA
 

reconstruction.
 

This
 

technique
 

entails
 

partitioning
 

the
 

evaluation
 

data
 

X
 

with
 

dimensions
 

N × M
 

( comprising
 

N
 

guided
 

waves)
 

into
 

several
 

non-overlapping
 

local
 

batches
 

or
 

time
 

windows.
 

Let
 

X t
 denote

 

the
 

t-th
 

batch
 

of
 

guided
 

waves,
 

represented
 

by
 

a
 

matrix
 

with
 

dimensionsL × M (containing
 

L
 

days
 

of
 

guided
 

waves
 

with
 

M
 

samples
 

each)
 

In
 

this
 

study,
 

each
 

evaluation
 

dataset
 

spans
 

80
 

days
 

of
 

guided
 

waves.
 

Both
 

the
 

denoising
 

PCA
 

reconstruction
 

and
 

short-term
 

PCA
 

reconstruction
 

are
 

implemented
 

with
 

a
 

1 -
 

day
 

time
 

window
 

size
 

(batch) .
 

In
 

other
 

words,
 

they
 

partition
 

each
 

evaluation
 

dataset
 

into
 

80
 

non-overlapping
 

batches,
 

each
 

( X t )
 

containing
 

1
 

000
 

guided
 

waves
 

in
 

this
 

paper.
 

Local
 

PCA
 

reconstruction
 

is
 

accomplished
 

using
 

the
 

transformation
 

matrix
 

V t
 with

 

a
 

dimension
 

of
 

P × M
 

and
 

consists
 

of
 

P
 

eigenvectors
 

(principal
 

components)
 

that
 

correspond
 

to
 

the
 

P
 

largest
 

eigenvalues
 

for
 

the
 

covariance
 

matrix
 

X̂T
t X̂ t for

 

X t
 

where
 

X̂ t
 is

 

obtained
 

by
 

subtracting
 

the
 

mean
 

of
 

each
 

column
 

from
 

X t
[12] .

 

The
 

transformed
 

representation
 

is
 

then
 

computed
 

as:
Y′t = X̂ tV

T
t (1)

Table
 

1　 Parameters
 

for
 

training
 

autoencoder
 

network
 

(自编码神经网络训练参数)

Parameters
 

Values
 

in
 

each
 

layer

Neurons
 

Number
 

of
 

Layers
 

in
 

Encoder
 

Network 2,000
 

512
 

128
 

32

Neurons
 

Number
 

of
 

Layers
 

in
 

Encoder
 

Network 32
 

128
 

512
 

2,000

Learning
 

Rate 0. 000
 

5

Batch
 

Size 256

　 　 The
 

representation
 

Y′t  with
 

L × P
 

dimension
 

contains
 

compressed
 

information
 

( when
 

P
 

is
 

smaller
 

than
 

M ).
 

Guided
 

waves
 

are
 

reconstructed
 

according
 

to
 

the
 

following
 

equation:
X̂′t = Y′tV t (2)
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The
 

reconstructed
 

guided
 

waves
 

batch
 

Xt  with
 

local
 

temporal
 

PCA
 

can
 

be
 

obtained
 

by
 

adding
 

each
 

column
 

mean
 

of
 

X t
 back

 

into
 

X̂′t
[12] .

 

It
 

should
 

be
 

noted
 

that
 

both
 

denoising
 

PCA
 

reconstruction
 

and
 

short-term
 

PCA
 

reconstruction
 

are
 

conducted
 

using
 

local
 

temporal
 

PCA
 

reconstruction
 

with
 

a
 

1-day
 

time
 

window
 

size.
 

However,
 

the
 

　 　 　 　

Fig. 1　 The
 

damage
 

detection
 

framework
 

incorporating
 

a
 

denoising
 

module
 

is
 

depicted
 

(噪声环境中故障检测算法框架图):
(a)

 

Showcases
 

guided
 

waves
 

utilized
 

for
 

assessing
 

structural
 

status,
 

susceptible
 

to
 

corruption
 

by
 

noise
 

stemming
 

from
 

harsh
 

environments;
 

(b)
 

Demonstrates
 

the
 

denoising
 

process
 

for
 

guided
 

waves
 

through
 

denoising
 

PCA
 

reconstruction;
 

(c)
 

and
 

(d)
 

Illustrate
 

short-term
 

and
 

autoencoder-based
 

reconstruction
 

methods,
 

employed
 

to
 

derive
 

short-term
 

PCA
 

and
 

autoencoder-based
 

reconstruction
 

coefficients,
 

facilitating
 

the
 

identification
 

of
 

guided
 

waves
 

amidst
 

regular,
 

irregular
 

environmental
 

variations
 

and
 

damage
 

variations

denoising
 

PCA
 

module
 

is
 

utilized
 

for
 

reconstructing
 

raw
 

guided
 

waves,
 

whereas
 

the
 

short-term
 

PCA
 

reconstruction
 

is
 

employed
 

for
 

processing
 

denoised
 

( reconstructed )
 

guided
 

waves.
1. 2　 Autoencoder

 

architecture
　 　 The

 

autoencoder
 

network
 

architecture
 

consists
 

of
 

both
 

an
 

encoder
 

and
 

a
 

decoder,
 

visualized
 

in
 

Fig. 1 ( d) .
 

It’ s
 

important
 

to
 

note
 

that
 

the
 

autoencoder
 

module
 

is
 

employed
 

to
 

reconstruct
 

denoised
 

guided
 

waves
 

generated
 

by
 

the
 

denoising
 

PCA,
 

rather
 

than
 

raw
 

guided
 

waves.
 

The
 

mean
 

square
 

error
 

(MSE)
 

is
 

employed
 

as
 

the
 

loss
 

function
 

to
 

train
 

the
 

model.
 

We
 

optimize
 

the
 

autoencoder
 

to
 

minimize
 

the
 

average
 

reconstruction
 

error
 

between
 

the
 

input
 

and
 

output
 

in
 

the
 

network.
 

The
 

parameters
 

employed
 

for
 

training
 

the
 

autoencoder
 

are
 

summarized
 

in
 

Table
 

I.
 

Within
 

the
 

encoder
 

network,
 

the
 

number
 

of
 

neurons
 

ranges
 

from
 

2
 

000
 

in
 

the
 

first
 

layer
 

to
 

512,
 

128,
 

and
 

finally
 

32
 

in
 

subsequent
 

layers.
 

Conversely,
 

in
 

the
 

decoder
 

network,
 

the
 

number
 

of
 

neurons
 

is
 

inversely
 

proportional.
 

The
 

autoencoder
 

is
 

trained
 

using
 

the
 

“Adam”
 

optimizer
 

with
 

a
 

learning
 

rate
 

of
 

0. 000
 

5
 

and
 

a
 

batch
 

size
 

of
 

256[12] .
1. 3　 Reconstruction

 

coefficient
　 　 The

 

reconstruction
 

performance
 

of
 

both
 

the
 

autoencoder
 

and
 

short-term
 

PCA
 

method
 

is
 

assessed
 

through
 

the
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reconstruction
 

coefficients
 

for
 

the
 

guided
 

waves.
 

These
 

coefficients
 

represent
 

the
 

Pearson
 

correlation
 

coefficient
 

between
 

a
 

( denoised)
 

guided
 

wave
 

and
 

its
 

corresponding
 

reconstructed
 

guided
 

wave,
 

ranging
 

from
 

-1
 

to
 

1,
 

which
 

is
 

defined
 

as
 

following
 

equation:

ri =
(x′i - x′i )

T(x i - x i)

‖x′i - x′i ‖‖x i - x i‖
(3)

ri  represents
 

our
 

reconstruction
 

coefficient,
 

where
 

‖·‖
  

represents
 

the
 

Euclidean
 

norm.
 

The
 

variable
 x i

 and
 x′i  are

 

scalars
 

that
 

represent
 

the
 

mean
 

of
 

the
 

i - th
 

( denoised )
 

guided
 

wave
 

measurement
 

x i
 and

 

the
 

reconstructed
 

guided
 

wave
 

x′i
[12] .

 

These
 

reconstruction
 

coefficients
 

r = [ r1
 r2

 r3…rN] T

  

obtained
 

by
 

the
 

autoencoder
 

and
 

short-term
 

PCA
 

for
 

each
 

denoised
 

guided
 

wave
 

will
 

be
 

used
 

to
 

detect
 

damage
 

in
 

noisy
 

conditions.
1. 4　 Irregular

 

variation
 

detection
　 　 Short-term

 

PCA
 

reconstruction
 

coefficients
 

can
 

be
 

used
 

to
 

detect
 

irregular
 

environmental
 

variations,
 

such
 

as
 

rain
 

and
 

snow.
 

Guided
 

waves
 

with
 

short-term
 

PCA
 

reconstruction
 

coefficients
 

below
 

λ
 

are
 

inferred
 

to
 

originate
 

from
 

irregular
 

environmental
 

variations
 

when
 

they
 

meet
 

the
 

condition:
r(S)
i ≤ λ (4)

Where
 

r(S)
 

i
 represents

 

the
 

short-term
 

PCA
 

reconstruction
 

coefficients
 

for
 

the
 

i-th
 

measurement.
 

As
 

previous
 

studies,
 

λ
 

corresponds
 

to
 

the
 

20-th
 

percentile
 

of
 

all
 

short-term
 

PCA
 

reconstruction
 

coefficients[12] .
1. 5　 Damage

 

detection
　 　 Guided

 

waves
 

that
 

cannot
 

be
 

reconstructed
 

by
 

the
 

autoencoder
 

and
 

are
 

not
 

identified
 

as
 

irregular
 

variations
 

(as
 

determined
 

by
 

short-term
 

PCA
 

reconstruction
 

based
 

on
 

Equation
 

( 4))
 

are
 

inferred
 

to
 

be
 

from
 

damage
 

variations.
 

Subsequently,
 

the
 

normalized
 

reconstruction
 

difference
 

is
 

employed
 

to
 

denoise
 

guided
 

waves
 

between
 

short-term
 

PCA
 

and
 

autoencoder,
 

computed
 

using
 

Equation
 

( 5 ).
 

When
 

these
 

reconstruction
 

coefficient
 

differences
 

deviate
 

significantly
 

from
 

0,
 

the
 

corresponding
 

measurements
 

are
 

classified
 

as
 

damage
 

variations.
 

The
 

damage
 

detection
 

indicator
 

is
 

defined
 

as
 

follows:

dri =
r(S) - r(L)

r(S)
median - (L)

median

(5)

Where
 

r(S)
 

and
 

r(L)
 

represent
 

the
 

short-term
 

PCA
 

and
 

autoencoder
 

reconstruction
 

coefficients,
 

respectively,
 

for
 

the
 

i-th
 

measurement. r(S)
median

 and
 

r(L)
median

 denote
 

the
 

medians
 

of
 

all
 

short-term
 

and
 

autoencoder
 

reconstruction
 

coefficients
 

for
 

guided
 

waves
 

in
 

an
 

evaluation
 

data.
 

These
 

two
 

medians
 

are
 

utilized
 

to
 

normalize
 

the
 

reconstruction
 

coefficients,
 

aiming
 

to
 

minimize
 

the
 

reconstruction
 

difference
 

between
 

short-term
 

PCA
 

and
 

autoencoder
 

during
 

regular
 

variations[12] .
 

Therefore,
 

damage
 

is
 

identified
 

as
 

follows:
dri ≥ η (6)
The

 

threshold
  

η
  

is
 

not
 

explicitly
 

predetermined
 

in
 

this
 

paper.
 

Instead,
 

the
 

study
 

employs
 

the
 

receiver
 

operating
 

characteristic
 

(ROC)
 

curve,
 

which
 

involves
 

sweeping
 

across
 

various
 

threshold
 

values
  

η,
 

to
 

assess
 

the
 

performance
 

of
 

the
 

unsupervised
 

damage
 

detection
 

framework.
 

To
 

mitigate
 

false
 

alarms
 

caused
 

by
 

irregular
 

variations,
 

we
 

set
 

dri  to
 

0
 

for
 

guided
 

waves
 

that
 

satisfy
 

Equation
 

(4).
1. 6　 Damage

 

detection
 

evaluation
　 　 In

 

this
 

paper,
 

we
 

utilize
 

the
 

receiver
 

operating
 

characteristic
 

( ROC)
 

curve
 

and
 

the
 

area
 

under
 

the
 

ROC
 

curve
 

(AUC)
 

to
 

evaluate
 

the
 

damage
 

detection
 

performance.
 

This
 

approach,
 

widely
 

employed
 

in
 

structural
 

health
 

monitoring
 

research,
 

calculates
 

the
 

true
 

positive
 

rate
 

(TPR)
 

and
 

false
 

positive
 

rate
 

( FPR)
 

by
 

sweeping
 

across
 

possible
 

thresholds[20] .
 

In
 

this
 

context,
 

true
 

positives
 

(TP)
 

represent
 

the
 

number
 

of
 

measurements
 

accurately
 

identified
 

as
 

damage,
 

while
 

false
 

positives
 

( FP)
 

indicate
 

the
 

number
 

of
 

measurements
 

incorrectly
 

identified
 

as
 

damage.

2　 Experimental
 

setup

　 　 We
 

employ
 

the
 

same
 

experiment
 

dataset
 

used
 

in
 

study[12]
 

to
 

evaluate
 

the
 

performance
 

of
 

our
 

strategy
 

for
 

selecting
 

optimal
 

components
 

under
 

a
 

range
 

of
 

environmental
 

conditions.
 

The
 

dataset
 

includes
 

ultrasonic
 

guided
 

waves
 

collected
 

from
 

an
 

aluminum
 

plate,
 

dimensions
 

53
 

cm×53
 

cm
×3

 

mm,
 

located
 

at
 

the
 

University
 

of
 

Utah
 

in
 

Salt
 

Lake
 

City.
 

This
 

plate
 

was
 

subjected
 

to
 

varying
 

outdoor
 

conditions,
 

experiencing
 

weather
 

phenomena
 

such
 

as
 

rain
 

and
 

snow.
 

For
 

the
 

guided
 

wave
 

monitoring,
 

each
 

measurement
 

involved
 

the
 

acquisition
 

of
 

8
 

ultrasonic
 

guided
 

waves,
 

together
 

with
 

environmental
 

information
 

like
 

temperature,
 

humidity,
 

air
 

pressure,
 

and
 

light
 

levels.
 

For
 

more
 

detailed
 

information
 

on
 

how
 

the
 

measurements
 

were
 

collected,
 

refer
 

to
 

the
 

studies[21] .

2. 1　 Synthetic
 

damage
 

guided
 

wave
 

generation
　 　 The

 

dataset
 

for
 

this
 

experiment
 

encompasses
 

80
 

days
 

of
 

guided
 

wave
 

data,
 

with
 

a
 

total
 

of
 

80
 

000
 

measurements
 

taken
 

under
 

diverse
 

environmental
 

and
 

operational
 

circumstances,
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recording
 

one
 

measurement
 

every
 

86
 

seconds.
 

The
 

guided
 

waves
 

within
 

this
 

dataset
 

experienced
 

synthetic
 

damage
 

over
 

4
 

days.
 

This
 

synthetic
 

damage
 

was
 

generated
 

following
 

methods
 

previously
 

established
 

in
 

the
 

literature[20] .
 

Such
 

a
 

method
 

conceptualizes
 

a
 

guided
 

wave
 

affected
 

by
 

damage
 

as
 

a
 

combination
 

of
 

a
 

straightforward
 

guided
 

wave
 

emitted
 

directly
 

and
 

another
 

wave
 

that
 

has
 

been
 

altered
 

through
 

its
 

interaction
 

with
 

a
 

simulated
 

damage
 

site[20] .
 

Consequently,
 

the
 

guided
 

waves
 

that
 

mimic
 

damage
 

variations
 

are
 

produced
 

by
 

combing
 

waves
 

from
 

both
 

the
 

shortest
 

and
 

longest
 

paths
 

of
 

transmission,
 

presented
 

in
 

previous
 

study[12] .
2. 2　 Damage

 

detection
 

under
 

noisy
 

conditions
　 　 To

 

evaluate
 

the
 

framework’s
 

ability
 

to
 

detect
 

damage
 

in
 

the
 

presence
 

of
 

noise,
 

we
 

introduce
 

Gaussian
 

noise
 

N(0,σ2)
 

to
 

the
 

guided
 

waves.
 

The
 

intensity
 

of
 

the
 

noise
 

is
 

regulated
 

by
 

the
 

signal-to-noise
 

ratio
 

(SNR):

SNRdB = 10log
Psignal

Pnoise
( ) and

 

Pxi
= 1
M∑

M

j = 1
x2
ij (7)

Our
 

experiment
 

assesses
 

the
 

framework ’ s
 

ability
 

to
 

detect
 

damage
 

in
 

noisy
 

conditions
 

by
 

analyzing
 

the
 

variation
 

of
 

AUC
 

scores
 

as
 

the
 

SNR
 

of
 

the
 

guided
 

waves
 

changes
 

from
 

10
 

to
 

-5
 

dB.

3　 Results
 

and
 

discussion

　 　 Anomaly
 

detection
 

performance
 

is
 

computed
 

for
 

raw
 

and
 

denoised
 

guided
 

waves
 

across
 

various
 

signal-to-noise
 

ratios,
 

ranging
 

from
 

∞
 

(Original)
 

to
 

-5
 

dB.
 

These
 

results
 

illustrate
 

the
 

enhancement
 

in
 

damage
 

detection
 

under
 

noisy
 

conditions
 

facilitated
 

by
 

our
 

proposed
 

denoising
 

strategy.

3. 1　 Guided
 

wave
 

reconstruction
 

under
 

noisy
 

conditions
 

for
 

PCA
 

and
 

autoencoder
　 　 In

 

the
 

first
 

subplot
 

of
 

Fig. 2,
 

reconstruction
 

coefficients
 

for
 

short-term
 

PCA
 

and
 

autoencoder
 

are
 

computed
 

using
 

original
 

guided
 

waves
 

without
 

noise.
 

In
 

Fig. 2,
 

the
 

reconstruction
 

coefficients
 

of
 

guided
 

waves
 

by
 

short - term
 

PCA,
 

denoted
 

as
 

“PCA
 

(1d),”
 

and
 

autoencoder,
 

denoted
 

as
 

“ Enc
 

( 80d),”
 

are
 

depicted
 

in
 

subplots
 

with
 

varying
 

signal-to-noise
 

ratios
 

( SNR):
 

∞
 

( Ori. ),
 

5,
 

0,
 

and
 

- 3
 

dB,
 

as
 

indicated
 

in
 

each
 

subplot’ s
 

title.
 

It
 

is
 

important
 

to
 

highlight
 

that
 

in
 

each
 

scenario,
 

the
 

damage
 

persists
 

for
 

4
 

days,
 

shaded
 

in
 

a
 

gray
 

region
 

within
 

each
 

subplot.
 

In
 

all
 

instances,
 

short-term
 

PCA
 

utilizes
 

the
 

first
 

15
 

components
 

for
 

reconstructing
 

guided
 

waves,
 

while
 

the
 

autoencoder-based
 

reconstruction
 

coefficients
 

are
 

generated
 

through
 

training
 

the
 

autoencoder
 

for
 

10
 

epochs.
 

A
 

noticeable
 

difference
 

between
 

the
 

short-term
 

PCA
 

and
 

autoencoder
 

reconstruction
 

coefficients
 

emerges
 

during
 

damage
 

moments,
 

as
 

indicated
 

in
 

the
 

shadowed
 

region.
 

However,
 

as
 

additional
 

noise
 

is
 

introduced
 

into
 

the
 

original
 

guided
 

waves,
 

reducing
 

the
 

signal-to-noise
 

ratio
 

from
 

∞
 

to
 

5
 

dB,
 

the
 

reconstruction
 

difference
 

between
 

short-term
 

PCA
 

and
 

autoencoder
 

Still
 

persists,
 

although
 

the
 

overall
 

reconstruction
 

performance
 

of
 

both
 

methods
 

deteriorates
 

due
 

to
 

noise
 

interference.
 

Consequently,
 

the
 

values
 

of
 

these
 

reconstruction
 

coefficients
 

become
 

lower
 

and
 

more
 

variable,
 

diminishing
 

their
 

ability
 

to
 

distinguish
 

anomaly
 

regions,
 

as
 

demonstrated
 

in
 

the
 

second
 

subplot.
Continuing

 

to
 

decrease
 

the
 

SNR
 

of
 

the
 

guided
 

waves,
 

the
 

values
 

of
 

these
 

reconstruction
 

coefficients
 

further
 

decrease
 

(reducing
 

to
 

around
 

0. 7
 

and
 

0. 6
 

in
 

the
 

third
 

and
 

fourth
 

subplots )
 

and
 

exhibit
 

increased
 

variability.
 

　 　 　 　 　

Fig. 2　 The
 

reconstruction
 

coefficients
 

of
 

guided
 

waves
 

by
 

short-term
 

PCA
 

and
 

autoencoder
 

with
 

varying
 

signal-to-noise
 

ratios
 

(噪声环境中自编码神经网络重建系数变化图)
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Distinguishing
 

the
 

reconstruction
 

difference
 

between
 

healthy
 

and
 

damaged
 

moments
 

for
 

achieving
 

anomaly
 

detection
 

in
 

noisier
 

conditions
 

becomes
 

nearly
 

impossible,
 

as
 

illustrated
 

in
 

the
 

third
 

and
 

fourth
 

subplots
 

of
 

Fig. 2.
3. 2 　 Anomaly

 

detection
 

performance
 

using
 

PCA
 

reconstruction
 

denoising
 

strategy
　 　 Comparing

 

the
 

reconstruction
 

coefficients
 

in
 

Fig. 2
 

with
 

those
 

in
 

Fig. 3,
 

it
 

can
 

be
 

found
 

that
 

our
 

proposed
 

PCA
 

reconstruction
 

denoising
 

strategy
 

preserves
 

the
 

existence
 

of
 

the
 

reconstruction
 

difference
 

between
 

healthy
 

moments
 

and
 

damage
 

moments
 

in
 

noisy
 

conditions.
 

In
 

Fig. 3,
 

tall
 

these
 

reconstruction
 

coefficients
 

are
 

computed
 

using
 

denoised
 

guided
 

waves,
 

employing
 

the
 

first
 

30
 

components
 

in
 

the
 

PCA
 

denoising
 

reconstruction,
 

instead
 

of
 

raw
 

guided
 

waves.
 

Also,
 

the
 

AUC
 

scores
 

computed
 

using
 

the
 

short-term
 

PCA
 

and
 

autoencoder
 

reconstruction
 

coefficients
 

with
 

raw
 

guided
 

waves
 

decrease
 

as
 

the
 

signal-to-noise
 

ratio
 

of
 

these
 

guided
 

waves
 

is
 

reduced
 

( by
 

introducing
 

stronger
 

Gaussian
 

noise
 

into
 

the
 

original
 

guided
 

waves ),
 

as
 

illustrated
 

in
 

the
 

first-row
 

subplots
 

in
 

Fig. 4.
 

The
 

first-row
 

subplots
 

depict
 

AUC
 

scores
 

calculated
 

using
 

raw
 

guided
 

waves
 

at
 

varying
 

signal-to-noise
 

ratios
 

(SNR):
 

( Ori. ),
 

10,
 

5,
 

0,
 

- 3,
 

and
 

- 5
 

dB,
 

with
 

each
 

SNR
 

labeled
 

in
 

the
 

title
 

of
 

the
 

respective
 

subplot.
 

In
 

contrast,
 

the
 

second-row
 

subplots
 

present
 

AUC
 

scores
 

derived
 

from
 

denoised
 

guided
 

waves,
 

utilizing
 

the
 

first
 

40
 

components
 

in
 

the
 

PCA
 

denoising
 

reconstruction.
 

In
 

the
 

computation
 

of
 

these
 

AUC
 

scores,
 

the
 

X-axis
 

denotes
 

the
 

number
 

of
 

training
 

epochs
 

used
 

for
 

autoencoder
 

training,
 

labeled
 

as
 

“Train
 

Epoch.
 

(L),”
 

and
 

the
 

Y-axis,
 

labeled
 

as
 

“ Comp.
 

Num. ( S ),”
 

signifies
 

the
 

number
 

of
 

principal
 

components
 

utilized
 

in
 

the
 

short-term
 

PCA
 

reconstruction.
 

However,
 

when
 

we
 

employ
 

PCA
 

to
 

first
 

reconstruct
 

( denoise )
 

these
 

guided
 

waves
 

and
 

then
 

use
 

the
 

PCA
 

denoised
 

guided
 

waves
 

to
 

calculate
 

the
 

normalized
 

reconstruction
 

coefficients
 

difference,
 

high
 

AUC
 

scores
 

are
 

maintained
 

even
 

when
 

the
 

SNR
 

of
 

raw
 

guided
 

waves
 

is
 

reduced
 

to
 

- 3
 

and
 

- 5
 

dB,
 

as
 

shown
 

in
 

the
 

second-row
 

subplots
 

of
 

Fig. 4.

Fig. 3　 The
 

reconstruction
 

coefficients
 

of
 

guided
 

waves
 

by
 

PCA
 

and
 

autoencoder
 

with
 

varying
 

signal-to
 

noise
 

ratios
 

after
 

using
 

denoised
 

(应用降噪算法后,噪声环境中自编码神经网络重建系数变化图)

Fig. 4　 The
 

AUC
 

are
 

scores
 

calculated
 

without
 

and
 

with
 

denoising
 

strategy
 

(降噪算法应用前后 AUC
 

score 变化图)
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　 　 An
 

interesting
 

observation
 

is
 

that
 

both
 

excessively
 

large
 

and
 

excessively
 

small
 

training
 

epochs,
 

as
 

well
 

as
 

the
 

number
 

of
 

components
 

used
 

in
 

the
 

short-term
 

PCA
 

reconstruction,
 

fail
 

to
 

yield
 

high
 

AUC
 

scores
 

for
 

the
 

anomaly
 

detection
 

method.
 

Previous
 

research
 

has
 

indicated
 

that
 

excessively
 

large
 

training
 

epochs
 

and
 

a
 

high
 

number
 

of
 

components
 

lead
 

the
 

autoencoder
 

and
 

PCA
 

to
 

reconstruct
 

guided
 

waves
 

not
 

only
 

from
 

healthy
 

guided
 

waves
 

but
 

also
 

from
 

damage
 

conditions.
 

Conversely,
 

excessively
 

small
 

training
 

epochs
 

and
 

a
 

low
 

number
 

of
 

components
 

result
 

in
 

suboptimal
 

reconstruction
 

of
 

all
 

guided
 

waves.
 

In
 

these
 

instances,
 

the
 

distinct
 

reconstruction
 

difference
 

between
 

healthy
 

moments
 

and
 

damage
 

moments
 

disappears,
 

ultimately
 

compromising
 

the
 

efficacy
 

of
 

anomaly
 

detection.
3. 3 　 Hyperparameter

 

investigation
 

for
 

PCA
 

recon-
struction

 

denoising
 

strategy
　 　 Considering

 

the
 

PCA
 

denoising
 

reconstruction
 

process,
 

the
 

key
 

hyperparameter
 

is
 

the
 

number
 

of
 

components
 

used
 

in
 

the
 

PCA
 

denoising
 

reconstruction
 

process.
 

Accordingly,
 

we
 

will
 

vary
 

the
 

number
 

of
 

components
 

from
 

4
 

to
 

60
 

to
 

denoise
 

guided
 

waves,
 

and
 

then
 

calculate
 

the
 

AUC
 

scores
 

with
 

these
 

denoised
 

guided
 

waves.
 

It
 

can
 

be
 

observed
 

in
 

Fig. 5,
 

which
 

illustrates
 

the
 

change
 

in
 

the
 

optimal
 

AUC
 

score
 

( the
 

largest
 

AUC
 

score
 

over
 

training
 

epochs)
 

with
 

different
 

SNR
 

values,
 

the
 

number
 

of
 

components
 

used
 

in
 

the
 

PCA
 

denoising
 

reconstruction,
 

and
 

the
 

number
 

of
 

components
 

used
 

in
 

the
 

short-term
 

PCA
 

reconstruction.
 

In
 

each
 

subplot,
 

x
 

represents
 

the
 

number
 

of
 

short-term
 

PCA
 

components
 

used
 

to
 

calculate
 

these
 

optimal
 

AUC
 

scores.
 

The
 

number
 

of
 

components
 

(4,
 

8,
 

15,
 

25,
 

40,
 

and
 

60)
 

used
 

in
 

the
 

PCA
 

denoising
 

reconstruc-
tion

 

is
 

depicted
 

in
 

the
 

legend
 

at
 

the
 

bottom
 

of
 

this
 

figure.
 

It
 

is
 

evident
 

that
 

when
 

the
 

SNR
 

is
 

larger,
 

such
 

as
 

above
 

0,
 

using
 

a
 

small
 

number
 

of
 

components
 

to
 

denoise
 

guided
 

waves
 

results
 

in
 

lower
 

optimal
 

AUC
 

scores,
 

as
 

shown
 

in
 

the
 

first
 

four
 

subplots
 

of
 

Fig. 5.
 

However,
 

as
 

the
 

SNR
 

continues
 

to
 

reduce,
 

using
 

a
 

small
 

number
 

of
 

components
 

to
 

denoise
 

guided
 

waves
 

leads
 

to
 

higher
 

optimal
 

AUC
 

scores
 

compared
 

to
 

those
 

using
 

a
 

larger
 

number
 

of
 

components,
 

as
 

shown
 

in
 

the
 

last
 

two
 

subplots
 

of
 

Fig. 5.
 

This
 

can
 

be
 

explained
 

by
 

the
 

fact
 

that
 

using
 

too
 

small
 

a
 

number
 

of
 

components
 

to
 

denoise
 

guided
 

waves
 

results
 

in
 

the
 

reconstructed
 

guided
 

waves
 

not
 

only
 

removing
 

noise
 

but
 

also
 

losing
 

more
 

information,
 

including
 

damage
 

information.
 

However,
 

if
 

the
 

SNR
 

is
 

too
 

low,
 

using
 

too
 

large
 

a
 

number
 

of
 

components
 

will
 

not
 

completely
 

filter
 

out
 

this
 

noise
 

and
 

then
 

worsen
 

the
 

reconstruction
 

coefficients,
 

thereby
 

compromising
 

anomaly
 

detection.

Fig. 5　 The
 

optimal
 

AUC
 

score
 

are
 

calculated
 

with
 

denoised
 

guided
 

waves,
 

with
 

the
 

signal-to-noise
 

ratio
 

changing
 

from
 

∞
 

(Ori. )
 

to
 

-5
 

dB(降噪算法中应用不同主成分数量情况下,最优 AUC
 

score 变化图)

　 　 Another
 

noteworthy
 

point
 

is
 

that
 

using
 

too
 

few
 

components
 

to
 

reconstruct
 

( denoise )
 

guided
 

waves
 

diminishes
 

the
 

anomaly
 

detection
 

robustness
 

to
 

the
 

number
 

of
 

components
 

used
 

in
 

the
 

short-term
 

PCA
 

reconstruction.
 

Since
 

the
 

time
 

window
 

size
 

of
 

the
 

denoising
 

PCA
 

reconstruction
 

and
 

the
 

short-term
 

PCA
 

reconstruction
 

is
 

the
 

same,
 

the
 

number
 

of
 

components
 

used
 

in
 

the
 

denoising
 

PCA
 

reconstruction
 

determines
 

the
 

limit
 

of
 

components
 

used
 

in
 

the
 

short-term
 

PCA
 

reconstruction
 

and
 

the
 

resolution
 

of
 

information
 

for
 

each
 

component
 

in
 

the
 

short-term
 

PCA
 

reconstruction.
 

For
 

example,
 

if
 

the
 

number
 

of
 

components
 

used
 

in
 

the
 

PCA
 

reconstruction
 

is
 

4,
 

using
 

4
 

components
 

in
 

the
 

short-term
 

PCA
 

reconstruction
 

will
 

result
 

in
 

all
 

short-term
 

PCA
 

reconstruction
 

coefficients
 

being
 

1
 

since
 

the
 

rank
 

of
 

the
 

matrix
 

consisting
 

of
 

denoised
 

guided
 

waves
 

is
 

4.
 

Consequently,
 

the
 

short-term
 

Preconstruction
 

will
 

lack
 

the
 

ability
 

to
 

detect
 

irregular
 

environmental
 

variations.

4　 Conclusion

　 　 This
 

paper
 

proposes
 

a
 

denoising
 

approach
 

to
 

enhance
 

the
 

performance
 

of
 

autoencoder-based
 

damage
 

detection
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under
 

noisy
 

conditions
 

by
 

utilizing
 

a
 

local
 

temporal
 

PCA
 

reconstruction
 

with
 

a
 

1-day
 

time
 

window.
 

Our
 

findings
 

indicate
 

a
 

significant
 

improvement
 

in
 

the
 

damage
 

detection
 

capabilities
 

when
 

applying
 

our
 

denoising
 

strategy,
 

with
 

SNR
 

values
 

ranging
 

from
 

10
 

to
 

-5
 

dB.
The

 

research
 

further
 

reveals
 

that
 

the
 

optimal
 

number
 

of
 

components
 

for
 

the
 

local
 

temporal
 

PCA
 

reconstruction,
 

aimed
 

at
 

enhancing
 

damage
 

detection
 

in
 

noisy
 

settings,
 

is
 

dependent
 

on
 

the
 

noise
 

level
 

(SNR)
 

of
 

the
 

guided
 

waves.
 

In
 

highly
 

noisy
 

environments,
 

it
 

is
 

advisable
 

to
 

use
 

fewer
 

components
 

for
 

denoising
 

to
 

prevent
 

the
 

inclusion
 

of
 

excess
 

noise
 

in
 

the
 

reconstructed
 

guided
 

waves,
 

which
 

could
 

deteriorate
 

the
 

quality
 

of
 

both
 

short-term
 

PCA
 

and
 

autoencoder
 

reconstructions.
 

Conversely,
 

in
 

environments
 

with
 

lower
 

noise
 

levels,
 

employing
 

more
 

components
 

is
 

beneficial
 

as
 

it
 

incorporates
 

more
 

environmental
 

and
 

damage
 

information
 

into
 

the
 

denoised
 

(reconstructed)
 

guided
 

waves,
 

thereby
 

improving
 

damage
 

detection.
 

Therefore,
 

for
 

the
 

practical
 

application
 

of
 

temporal
 

PCA
 

reconstruction
 

in
 

improving
 

damage
 

detection,
 

it
 

is
 

advisable
 

to
 

first
 

estimate
 

the
 

noise
 

level
 

of
 

the
 

collected
 

guided
 

waves,
 

which
 

aids
 

in
 

choosing
 

an
 

appropriate
 

number
 

of
 

components
 

for
 

the
 

denoising
 

PCA
 

reconstruction
 

process.
 

Noise
 

level
 

estimation
 

can
 

be
 

done
 

through
 

temporal
 

correlation
 

analysis
 

of
 

guided
 

waves
 

from
 

adjacent
 

locations.
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