DOI: 10. 19650/j. cnki. cjsi.

磁性液体非浸没式二阶浮力特性研究*

秦小然1,王四棋1,陈 龙1,李德才1,王洪林2

(1.北京交通大学机械电子与控制工程学院 北京 100044; 2.山东众志军创电子科技有限公司 威海 264299)

摘 要:磁性液体为一种兼具磁性与流动性的智能材料,基于自身特有的二阶浮力特性能有效悬浮永磁质量块,改善永磁质量 块与接触面间的摩擦形式,这一功能有效促进其在电磁传感、电磁能量采集及阻尼减振等方面的广泛应用。主要针对永磁铁在 非浸没于磁性液体中所受的二阶浮力进行理论分析,利用有限元仿真分析其磁场及磁压差,通过实验定量探究了永磁铁悬浮高 度分别与磁性液体注入量和悬浮力的关系并进行了磁性液体的应用对比试验。实验结果表明,磁性液体注入量与悬浮高度在 磁性液体注入量 0.3~3.4g存在较好的线性关系,并且实验与理论结果具有良好的一致性。

关键词:磁性液体;二阶浮力;磁场;悬浮高度

中图分类号: TM271 TH9 文献标识码: A 国家标准学科分类代码: 430.30 140.35

Research on the second-order buoyancy characteristics of magnetic fluid in non-submerged situation

Qin Xiaoran¹, Wang Siqi¹, Chen Long¹, Li Decai¹, Wang Honglin²

(1. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China;
 2. Shandong Zhongzhi Junchuang Electronic Technology Ltd, Weihai 264299, China)

Abstract: Magnetic fluid is one kind of intelligent material with both magnetism and fluidity, which can effectively suspend permanent magnetic mass blocks to improve the friction between the permanent magnetic mass block and the contact surface based on its unique second-order buoyancy characteristics. The function effectively promotes its wide application in electromagnetic sensing, electromagnetic energy harvesting, damping shock absorbers, etc.. This article focuses on the theoretical analysis of the second-order buoyancy of the permanent magnetic in a non-submerged magnetic fluid and analyzes the magnetic field and magnetic pressure difference by using finite element simulation. Experiments are implemented to investigate quantitatively the relationship between the suspension height of the permanent magnet results show that there is a good linear relationship between the magnetic fluid injection volume and the levitation height in the interval of $0.3 \sim 3.4$ g. The experimental data are in good agreement with the theoretical results. **Keywords**; magnetic fluid; second-order buoyancy; magnetic field; suspension height

0 引 言

磁性液体作为新型的超顺磁功能材料,是由磁性颗 粒、基载液以及表面活性剂组成的液固两相流^[1-3]。在宏 观上,表现为液体,遵循流体力学规律;从微观上,固相磁 性颗粒约占液体总体积的 10%,但每毫升液体中固相微 粒可达到 1 018 颗量级,因此磁性液体的行为将会由于 磁性颗粒对磁场的响应而受到控制^[4-6]。二阶浮力作为 磁性液体特性之一,是指磁性液体可以悬浮比重比自身 大的永磁铁^[78],这一特性使其在传感、电磁能量采集和 阻尼减振等应用方面存在极大优势。Wu等^[9]将磁性液 体作为润滑剂和缓冲液搭建了小型的电磁振动采集器, 为可穿戴设备提供电能;Wang等^[10]在抑制低频振动方 面提出了基于磁性液体的阻尼器,能够将阻尼时间降低 一半;谢君等^[11]利用二阶浮力设计了一种霍尔式微压传 感器,将精度提升到1Pa。

对于浸没在磁性液体中并稳定悬浮的永磁铁,是由

收稿日期:2023-10-27 Received Date: 2023-10-27

^{*}基金项目:山东省科技型中小企业创新能力提升工程项目(2021TSGC1120)资助

于磁性液体的导磁率远大于容器所用的材料。当永磁铁 因重力在磁性液体中下降并靠近容器底部时,永磁铁下 端磁力线会被压缩,形成更大的磁场强度^[12-13]。由于永 磁铁上下磁感应强度的差异,会产生向上的磁压力差,在 磁压力差、阿基米德浮力和重力的共同作用下,永磁铁将 会稳定悬浮^[14]。磁性液体对于非浸没永磁铁同样拥有 悬浮效果,本文通过磁性液体的伯努利方程并结合受力 分析对该种情况下的二阶浮力公式进行了理论推导,利 用 COMSOL 有限元分析软件完成了对永磁铁在不同磁 导率材料中的磁场分布进行仿真和磁压强计算,并对相 关理论进行了有效验证。另外通过磁性液体注入量与永 磁铁悬浮高度、外加压力与永磁铁悬浮高度两个实验,定 量分析其对应关系。

1 永磁铁非浸没二阶浮力理论分析

如图 1 所示, 在轴向充磁的圆柱形永磁铁下端注入 磁性液体,由于永磁铁下端面边缘处磁性最强, 并随着向 端面圆心方向和圆柱面中间部位, 磁场强度逐渐降低, 所 以磁性液体首先会流向下端面边缘处, 之后由边缘向永 磁铁下端面圆心方向和圆柱面方向扩散, 基于此建立非 浸没式永磁铁二阶浮力模型。其中 D 表示磁液与永磁铁 的总体高度, h 为永磁铁浸在磁性液体中的高度, 即提供 液体压强的深度, d 表示永磁铁的悬浮高度。

非浸没永磁铁悬浮于磁性液体之上保持平衡时,除 重力外,其下端面共受到3个力的共同作用,分别是由于 磁性液体被磁化所产生的磁压力、磁致伸缩压力以及阿 基米德浮力^[15],如式(1)~(4)所示。

$$P = P_{\rm s} + P_{\rm m} + P_{\rm g} \tag{1}$$

$$P_{s} = \mu_{0} \int_{0}^{H} \left(\vec{v} \frac{\partial M}{\partial \vec{v}} \right) \quad \mathrm{d}H \tag{2}$$

$$P_{\rm m} = \mu_0 \int_0^H M \mathrm{d}H \tag{3}$$

$$P_{\rm g} = \rho g h \tag{4}$$

式中: P_s 为磁致伸缩压力,由于模型是处于静止且温度 恒定的状态,所以忽略不计; P_m 为磁压力; P_g 为液体压 力; μ_0 为真空磁导率;M为磁性液体的磁化强度;H为磁 场强度;T表示温度; ρ 为磁性液体密度;v表示磁性液体 的流动速度。对压力进行梯度计算并结合散度定理 得到:

$$\nabla P = \nabla \mu_0 \int_0^H M dH + \nabla \rho g h = \mu_0 M \nabla H + \mu_0 \int_0^H (\nabla M)_H dH + \rho g \nabla h$$
(5)

由于磁性液体密度恒定,其磁化强度 M 仅与外加磁场的磁场强度 H 和温度 T 有关,即存在函数关系 M = M(H,T),所以:

$$\mu_0 \int_0^H (\nabla M) \, \mathrm{d}H = \mu_0 \int_0^H \frac{\partial M}{\partial T} \, \nabla T \, \mathrm{d}H \tag{6}$$

代入式(5)得到:

$$\nabla P = \mu_0 M \nabla H + \mu_0 \int_0^H \frac{\partial M}{\partial T} \nabla T \mathrm{d}H + \rho g \nabla H \tag{7}$$

对于静止且温度恒定的流体来说:

$$\mu_0 \int_0^M \frac{\partial M}{\partial T} \nabla T \mathrm{d}H = 0 \tag{8}$$

式(7)即为:

$$\nabla P = \mu_0 M \nabla H + \rho g \nabla h \tag{9}$$

对于磁性液体,流体内部的力平衡可以表示为:

$$\oint_{S_{m}+S_{a}+S_{c}} P\boldsymbol{n} \mathrm{d}a + \int_{V1} \nabla P \mathrm{d}V = 0$$
 (10)

式中: S_m 为永磁铁接触的磁性液体边界界面; S_a 为与空 气接触的磁性液体的自由液气边界界面; S_c 为与实验平 台接触的磁性液体的固液边界界面; V_1 为磁性液体总体 积。磁性液体产生的作用在磁体上的力与永磁铁的重力 相平衡,即:

$$mg = F_m + F_g \tag{11}$$

式中:*F*_g和*F*_m分别是阿基米德浮力和磁性液体的二阶 浮力。

磁性液体产生的作用在磁体上的力为:

$$F_{1} = F_{m} + F_{g} = -\int_{S_{m}} (P_{m} + P_{g}) \boldsymbol{n} da - \int_{V_{1}} \mu_{0} M \nabla H dV$$
(12)

根据散度定理,有:

$$-\int_{V_1} \boldsymbol{\mu}_0 M \nabla H \mathrm{d}H = \int_{S_m} P_m \boldsymbol{n} \mathrm{d}a + \int_{S_c} P_m \boldsymbol{n} \mathrm{d}a + \int_{S_a} P_m \boldsymbol{n} \mathrm{d}a$$
(13)

将式(13)代人式(12) 可得,

$$F_{1} = \int_{S_{c}} P_{m} \boldsymbol{n} d\boldsymbol{a} + \int_{S_{a}} P_{m} \boldsymbol{n} d\boldsymbol{a} - \int_{S_{m}} P_{g} \boldsymbol{n} d\boldsymbol{a}$$
(14)

有:

84

$$F_{g} = -\int_{S_{m}} P_{g} \boldsymbol{n} \mathrm{d}\boldsymbol{a}$$
(15)

由式(12)、(14)和(15)可知,磁性液体的二阶浮 力为:

$$F_{\rm m} = \int_{S_c} P_{\rm m} \boldsymbol{n} \mathrm{d}\boldsymbol{a} + \int_{S_a} P_{\rm m} \boldsymbol{n} \mathrm{d}\boldsymbol{a}$$
(16)

由磁场的对称性可知,磁化压力在气液边界界面 *S*_a 上的积分为 0,式(16)可简化为:

$$F_{\rm m} = \int_{S_{\rm c}} P_{\rm m} \boldsymbol{n} \mathrm{d}\boldsymbol{a} = \int_{r_2 r_1} P_{\rm m} \cdot 2\pi r \mathrm{d}r \tag{17}$$

式中: r_1 和 r_2 分别为环宽的内外半径。由于在磁性液体 内部中认为M与H的方向一致且与温度无关,得:

$$M = \frac{\mu - \mu_0}{\mu_0} \tag{18}$$

根据式(3)和(18)对式(17)化简为:

$$F_{\rm m} \int_{r_1}^{r_2} \mu_0 \int_0^H \frac{\mu - \mu_0}{\mu_0} H dH dr = (\mu - \mu_0) \int_{r_1}^{r_2} \int_0^H H \cdot 2\pi r dH dr$$
(19)

2 永磁铁悬浮特性对应的磁场

为探究永磁铁磁感应线在不同磁导率材料中的分布,对其进行磁场仿真。其中永磁体直径为20mm,高度为20mm,材料为NdFeB-35,其相关参数如表1所示。磁

化模型设定为剩余磁通密度,大小为1T。空气和实验平台的相对磁导率设置为1,磁性液体的相对磁导率设定为1.3,磁化模型依据于相对磁导率。结构网格划分结果如图2所示。

表1 永磁铁性能参数

Table 1 Performance	parameters	of	permanent	magnets
---------------------	------------	----	-----------	---------

最大磁能积	剩磁/Br	居里温度	矫顽力	磁导率
$/(kJ\!\cdot\!m^{-3})$		∕°C	$/(KA \cdot m^{-1})$	/μ
287~310	≥1 210	310	≥899	1.05

将永磁铁的悬浮高度设为参数,其范围为2.4~ 0.3 mm,以0.3 mm为步长,得到不同悬浮位置的磁场分 布,结果如图3所示。由于磁性液体的导磁率大于空气 和非导磁板,所以在磁性液体与永磁铁的接合处会聚集 更多的磁感应线,即永磁铁下端边缘部分磁通密度高于

图 3 不同悬浮高度的磁通密度

永磁铁上端。磁性液体在磁场作用下被磁化,表现出 了与普通磁性液体不一样的性质,内部的磁场强度梯 度会产生大的磁压力,将永磁铁稳定悬浮。图3(a)中 永磁铁下端面最边缘处磁性液体的磁感应强度最大, 且随着往圆心方向先减小后增大。边缘处最大是因为 该处永磁铁自身的磁感应线相对密集,并且由于磁性 液体的包覆,使得外部空气中的磁感应线向该处聚集, 使得边缘处磁场强度进一步增大。随着往圆心方向先 减小的原因是在磁性液体内部磁导率是一致的,永磁 铁本身的产生的磁感应强度是减小的趋势,故而磁感 应强度减弱。在永磁铁下端面、磁性液体以及空气三 者边界处磁感应强度又进一步增大,这是因为永磁铁 下端原本空气部分的磁感应线聚集到磁性液体当中, 导致磁场强度再次增强。

通过 COMSOL 有限元的计算结果可以得出永磁铁 不同悬浮高度下磁性液体与实验平台结合处的磁压强大 小,如图 4 所示。通过磁压强的仿真结果得出永磁铁悬 浮高度越低,磁性液体被压缩的越低,磁性液体中的磁场 强度梯度越大,产生的磁压强越大。另外在悬浮高度降 低的同时,磁性液体与实验平台所贴合圆环面的环宽在 不断增大,所以每段曲线的最高点均对应着永磁铁圆周 边缘位置。

图 4 不同悬浮高度的磁压强

3 磁性液体悬浮永磁铁实验分析

3.1 磁性液体注入量与永磁铁悬浮高度的关系

磁性液体悬浮永磁铁的高度不仅与永磁铁的磁场 强度、磁性液体的磁化强度有关,与磁性液体注入量同 样直接相关。利用单一变量原则,探究永磁铁的悬浮 高度与磁性液体注入量之间的关系。实验利用测力计 和刻度标尺完成,如图 5 所示。实验中所选用的是煤 油基磁性液体,其密度为 1.48×103 kg/m³,粘度在室温 时为 0.01 Pa·s。

Fig. 5 Experimental test platform

设定未加入磁性液体时的永磁铁高度为 0, 再注入 磁性液体将永磁铁悬浮。在进行注入时, 为保证磁性液 体只处于永磁体的下端面, 应在永磁体的最下端缓缓加 入, 防止被永磁铁上端吸引。实验以 0.1g的磁性液体为 变化量, 从 0g开始注入, 每改变一次质量测量一次悬浮 高度。测量方法为将测力计探头缓慢往下降, 当力的示 数由零开始突变时, 刻度尺上的标数即永磁体在该磁性 液体质量下的悬浮高度。当磁性液体的加入量为 3.4 g 时, 永磁铁下端开始无法约束所加入的磁性液体, 液体开 始被永磁铁上端吸入, 所以实验进行到 3.4 g 后停止 实验。

通过磁性液体的注入量可以得到磁性液体的体积, 从而根据模型计算出永磁铁的悬浮高度以及磁性液体在 底面径向的分布。当磁性液体注入量过少时(<0.3g), 永磁铁对磁性液体的压力过大,并且永磁铁边缘处存在 圆倒角,故所取模型在该范围并不适用,但对于注入量在 0.3g及以上的磁性液体比较适用,模型如图6所示,其 中 d 代表永磁体的悬浮高度,h 代表永磁铁侵入磁性液 体的深度,L 为磁性液体在永磁铁下方的有效宽度。

Fig. 6 Model diagram

磁性液体注入量与永磁铁悬浮高度的实验数据以及 通过理论模型得出的悬浮高度数据如图 7 所示。通过图 中实验值曲线可以得出,磁性液体的注入量与永磁铁悬 浮高度基本上处于一个线性关系,但是这种增加的趋势 是逐渐减缓的。其原因为永磁铁所能提供的磁场是一定 的,当所加入的磁性液体越多,所磁化的磁性液体也就越 多,能够提供更大的悬浮力,但是永磁铁悬浮高度的增大 会使得磁性液体的磁场强度梯度减小,所以悬浮高度增 加的趋势是逐渐降低的。假设磁性液体量足够多,即充 分并完全浸没永磁铁之后,永磁铁的悬浮高度将会保持 不变,此时在竖直方向上,磁性液体的磁场强度梯度产生 的磁压力、阿基米德浮力、和重力三力平衡。重力和液体 浮力是定值,所以磁性液体中磁场强度梯度产生磁压力 同样为定值,即永磁铁悬浮高度不变。

3.2 悬浮力与永磁铁悬浮高度的关系

对悬浮高度进行了进一步探究,即在一定的磁性液体注入量下,给予永磁铁一个外加的可控压力,将导致永磁铁的悬浮高度降低。利用同样的实验台,测力探头可以得出施加压力的大小,悬浮的高度值及其变化由刻度标尺得出,外加压力的数值为磁性液体二阶浮力除去克服重力之外的浮力大小,将其称为悬浮力。实验一共进行5组,磁性液体注入量分别为0.3、0.6、0.9、1.2、1.5g,每组实验重复3次。当注入量为1.5g,悬浮高度下降到0.1 mm时,磁性液体会被永磁铁上端吸引,故没有再继续增加磁性液体的注入量进行实验。

实验数据如图 8 所示,可以看出,悬浮高度越低,磁 性液体所提供的二阶浮力越大。悬浮力与悬浮高度的变 化主要有前两段范围组成。第 1 段是由于外加压力导致 永磁铁悬浮高度减小,磁性液体被进一步磁化,悬浮力增 加。第 2 段是因为磁性液体的磁化过程已经饱和,而悬 浮高度被进一步压缩,此时液体当中的固相颗粒间的尺 寸不断减小,悬浮力增加。最后一部分斜率突然变大是 由于磁性液体已经无法被压缩,等同于永磁铁与实验测 量平台直接接触,此时已经不属于磁性液体的悬浮力。 通过实验可以得出在不同注入量下的磁性液体所能提供 给永磁铁的最大悬浮力,其中注入量为1.5g时,在极限 压缩状态下,磁性液体提供的悬浮力可以达到3.2N。由 于实验仪器的测力探头和标尺是通过手柄旋转进行升降 的,故实验有较小的回程误差。另外磁性液体的注入量 和永磁铁的悬浮高度关系的线性度高,便于设计成位移、 角度等传感器。

Fig. 8 Relationship between levitation force and levitation height

将磁性液体注入量为 1.5 和 1.2 g 的理论模型进行 有限元计算得出不同悬浮高度下磁性液体的磁压强,并 通过理论公式式(17)积分得出了悬浮高度与悬浮力的 关系,如图 9 所示。理论值和实验值在悬浮高度较大,即 初始压缩时,比较吻合;但当悬浮高度较低、压缩量较大 时理论值比实际的实验值大,其原因是实际上磁性液体 在磁化过程中会出现饱和现象,但是在仿真中并没有这 一限制,故导致最后的仿真值会出现较高的偏差,该仿真 对比实验表明,所推导的在非浸没条件下二阶浮力的理 论公示具有一定的实用性。

3.3 磁性液体悬浮式能量采集器性能分析

利用探究磁性液体二阶浮力特性设计电磁能量采集器,如图 10 所示,该能量采集器为单自由度弹簧质量阻 尼系统^[10],动磁铁作为质量块受到定磁铁磁引力,响应 外部振动而往复运动,引起下方感应线圈内磁通量发生 改变产生电压,实现振动能的电磁采集^[16]。在动磁铁周 围注入磁性液体,吸附有磁性液体的永磁铁被悬浮,使得 原本动磁铁与运动区域间的固体与固体之间的摩擦变为 液体与固体之间的摩擦,提高了电磁能量采集器的输出 功率和能量转化率。

实验中动磁铁的直径为40 mm,高度10 mm,定磁铁 的直径为10 mm,高度为2 mm,两者材料均为 NdFeB-35。 实验以悬臂梁作为振动源,将整体实验结构固定于悬臂 梁自由端的一端,将4个单独的电磁能量采集器固连并 固定在悬臂梁自由端的一端,以保证每个采集器受到的 激励是一致的,如图11(a)和(b)所示。进行对比实验, 在4个采集器中分别注入2、3、4和0g磁性液体。给予 悬臂梁一定的激励后自由释放,通过数据采集卡采集 4 个电磁能量采集器的感应电压,最终结果如图 11(c)所示。根据磁性液体注入量与输出的感应电压的变化,可以得出是二者是正相关。未加入磁性液体的采集器中的动磁铁由于摩擦太大只能跟随采集器外壳一起运动;加入磁性液体后,由于磁性液体易于流动,所以永磁铁对惯性力敏感度会提高,摩擦阻尼大大降低,并且随着磁性液体注入量的增加,动磁铁的相对运动速度越快,输出的感应电压越大。

4 结 论

本文针对磁性液体非浸没式永磁铁的悬浮特性, 结合有限元磁场仿真,理论推导出了磁性液体非浸没 式二阶浮力方程并进行了应用实验研究。利用有限元 软件具体分析了永磁铁的磁场在磁性液体中的分布情 况及合理性,并得出了永磁铁不同悬浮高度下的磁压 强的大小。通过实验获得了永磁铁的悬浮高度与磁性 液体注入量存在近似的线性关系,在3.4g最大注入量 下,悬浮高度可以达到3.8 mm,同样定量探究了外加压

第45卷

力与永磁铁悬浮高度之间的关系,并与理论计算出的 悬浮力进行对比,进一步验证理论公式的准确性,同时 实验结果还表明该类磁性液体悬浮永磁铁时在极限受 压状态下能提供的最大悬浮力为 3.2 N。将磁性液体 用于电磁能量采集器中,结果表明磁性液体注入量与 输出的感应电压是正相关。该研究结果能够为新型基 于磁性液体设计的传感器、电磁能量采集器以及阻尼 减振器等提供设计基础。

参考文献

- [1] RAJ K, MOSKOWITZ R. Commercial applications of ferrofluids [J]. Journal of Magnetism and Magnetic Materials, 1990, 85(1-3): 233-245.
- [2] YU J, CHEN J, LI D. Experimental error analysis of measuring the magnetic self-levitation force experienced by a permanent magnet suspended in magnetic fluid with a nonmagnetic rod[J]. Journal of Magnetism and Magnetic Materials, 2019, 469: 323-328.
- [3] ZHANG T, WEN Z, LEI H, et al. Surface-microengineering for high-performance triboelectric tactile sensor via dynamically assembled ferrofluid template [J]. Nano Energy, 2021,87: 106215.
- [4] 池长青. 铁磁流体的物理学基础和应用[M]. 北京: 北京航天航空大学出版社, 2011.
 CHI CH Q. Physical Basis and Application of Ferrofluid[M].
 Beijing: Beijing University of Aeronautics and Astronautics Press, 2011.
- [5] LI Z, LI D, DONG J, et al. Study of temperature influence on the rheological behavior of magnetic fluids[J]. Journal of Magnetism and Magnetic Materials, 2021, 545(6): 168757.
- [6] 池长青. 铁磁流体力学[M]. 北京:北京航空航天大 学出版社, 1993.
 CHI CH Q. Dynamics of Ferrofluid [M]. Beijing: Beijing

University of Aeronautics and Astronautics Press, 1993.

- [7] ROSENSWEIG R E. Buoyancy and stable levitation of a magnetic body immersed in a magnetizable fluid [J].
 Nature, 1966, 210(5036): 613-614.
- [8] ZHANG W, PENG J, LI S. Damping force modeling and suppression of self-excited vibration due to magnetic

fluids applied in the torque motor of a hydraulic servovalve[J]. Energies, 2017, 10(6): 749-756.

- [9] WU S, LUK P C K, LI C, et al. An electromagnetic wearable 3-DoF resonance human body motion energy harvester using ferrofluid as a lubricant [J]. Applied Energy, 2017, 197: 364-374.
- [10] WANG S, LIU Y, LI D. A ferrofluid-based planar damper with magnetic spring[J]. Journal of Magnetics, 2018, 23(3): 405-408.
- [11] 谢君,李德才,邢延思.新型磁性液体微压差传感器的设计及耐压分析[J]. 仪器仪表学报,2015,36(9):2005-2012.
 XIE J, LI D C, XING Y S. Design and withstand voltage analysis of a new magnetic fluid micro differential pressure sensor [J]. Chinese Journal of Scientific Instrument, 2015, 36(9):2005-2012.
- [12] BASHTOVOI V G, BOSSIS G, KABACHNIKOV D N, et al. Modelling of magnetic fluid support[J]. Journal of Magnetism and Magnetic Materials, 2002, 252: 315-317.
- [13] 杨文明,李德才,冯振华.磁性液体阻尼减振器实验研究[J].振动与冲击,2012,31(9):144-148.
 YANG W M, LI D C, FENG ZH H. Experimental study on magnetic fluid damper[J]. Journal of Vibration and Shock, 2012, 31(9): 144-148.
- [14] 何新智.磁性液体二阶浮力原理的实验研究[J].功能材料,2012,43(21):3023-3027.
 HE X ZH. Experimental study on the second-order buoyancy principle of magnetic fluid [J]. Journal of Functional Materials,2012,43(21):3023-3027.
- [15] YU J, HE X, LI D, et al. Boundary interface condition of magnetic fluid determines the magnetic levitation force experienced by a permanent magnet suspended in the magnetic fluid [J]. Physics of Fluids, 2018, 30(9): 092004.
- [16] CHEN L, WANG S, YUAN F, et al. A multi-frequency electromagnetic vibration energy harvester based on ferrofluid [J]. International Journal of Applied Electromagnetics and Mechanics, 2023,71(1): 81-90.

作者简介

秦小然,2022 年于石家庄铁道大学取得 学士学位,现为北京交通大学硕士研究生, 主要研究方向为电磁能量采集。

E-mail: 22121327@ bjtu. edu. cn

Qin Xiaoran received her B. Sc. degree from Shijiazhuang Railway University in 2022. She is currently a M. Sc. candidate at Beijing Jiaotong University. Her main research interest is electromagnetic energy harvester.

王四棋(通信作者),2013 年于重庆大 学取得博士学位,现为北京交通大学副教 授,主要研究方向磁性液体阻尼减震、电磁 能量采集。

E-mail: sqwang@ bjtu. edu. cn

Wang Siqi (Corresponding author) received his B. Sc. degree from North China University of Water Resources and Electric Power in 2006, M. Sc. degree from Dalian Jiaotong University in 2009, and Ph. D. degree from Chongqing University in 2013. He is currently an associate professor at Beijing Jiaotong University. His main research interests include magnetic fluid damping and electromagnetic energy harvester.

李德才,1992年于北京航空航天大学取 得硕士学位,1996年于北京交通大学取得博 士学位,现为清华大学教授,主要研究方向 为磁性液体密封。

E-mail: dcli@bjtu.edu.cn

Li Decai received his M. Sc. degree from Beijing University of Aeronautics and Astronautics in 2009, and Ph. D. degree from Beijing Jiaotong University in 2013. He is currently a professor at Tsinghua University. His main research interest is magnetic fluid seal.

王洪林,1998年于山东师范大学获得学 士学位,2008年于山东大学获得硕士学位, 现为山东众志军创电子科技有限公司总经 理,主要研究方向为波浪能发电。

E-mail: 2284052135@ qq. com

Wang Honglin received his B. Sc. degree from Shandong Normal University in 1998 and M. Sc. degree from Shandong University in 2008. He is currently the general manager of Shandong Zhongzhi Junchuang Electronic Technology Co. His main research interest is wave energy generation.