DOI: 10. 19650/j. cnki. cjsi. J2109075

广域行波信息与图注意力网络相结合的 输电网故障定位*

张 翼,刘富州,朱永利,肖建平

(华北电力大学电气与电子工程学院 保定 071003)

摘 要:融合电网中诸多的行波测点信息能够提高故障定位的精度和可靠性,但目前尚缺乏一种能够结合网络拓扑、自适应地确定不同故障位置下各测点重要度的多源行波融合定位方法。因此,提出了广域行波信息与图注意力网络(GAT)相结合的输电网故障定位方法。首先,将全网行波测点及测点间的架空线作为节点和边构建广域行波图数据,行波信号的变分量模态分解(VMD)分量作为节点特征。GAT 根据各测点的拓扑关联挖掘广域行波特征,并选定故障线路、输出表征测点重要度的自适应权重。进一步地,利用该自适应权重融合多源行波信息以测算精确的故障位置。结果表明,本文方法能够定位多种类型的线路故障,诸多故障位置下的测距误差均在 100 m 以内;相较于传统方法,减少测点时优势更加显著,不同故障位置下的定位精度提高了 20~400 m 不等。

Fault location of transmission network combining Wide-area traveling wave information and graph attention network

Zhang Yi, Liu Fuzhou, Zhu Yongli, Xiao Jianping

(School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China)

Abstract: Fusion of wide-area traveling wave (TW) information in the power network can improve the accuracy and reliability of fault location. However, there is no available multi-source fusion location method which can adaptively determine the importance of each TW measurement point at different fault locations according to network topology. Hence, a novel fault location method based on wide-area TW and graph attention network (GAT) is proposed in this paper. Firstly, all TW measuring points of the whole network and the overhead lines among them are taken as the nodes and edges to construct the graph data of wire-area TW, while the variational mode decomposition (VMD) theory is employed to obtain the nodes' features. Then, GAT mines the wide-area TW characteristics according to the topology correlation of the power network, identifies the fault line, and outputs the adaptive weight that represents the importance of the measured points. Furthermore, the adaptive weight is used to fuse multi-source TW information to calculate the precise fault location. The results show that this approach can locate multiple types of line faults, and the location errors at many typical fault points are within 100 m. Compared with the traditional methods, this approach has more obvious advantages in case of fewer measuring points, and the location accuracy under different fault points is improved by $20 \sim 400$ m.

Keywords: transmission network; fault location; wide-area traveling wave information; graph attention network

0 引 言

输电线路作为电力输送的大动脉,在广大区域内 承担着重要的电力供应任务。对输电线路故障进行准 确的定位,能够有效缩短系统停运时间、降低损失,是 提高电网可靠性的重要手段^[1]。现有的故障定位方法 主要有行波法和阻抗法^[2-3],其中行波法测距精度高、 不受过渡电阻和故障类型等因素的影响,在实际应用 中较为广泛。

收稿日期:2021-12-22 Received Date: 2021-12-22

^{*}基金项目:国家自然科学基金(51677072)项目资助

行波测距中,基于单端和双端的故障定位方法最为 常见。经典的单端法利用单端检测的故障初始行波和故 障点反射行波的波头时差测算故障位置[4],但反射行波 在复杂线网中多次折反射,难以准确识别各波头来源^[5]。 模量波速差法是对单端法的有效扩展,利用解耦行波获 得的零模和线模分量的速度差及到达测点的时间差实现 故障定位[6-7],文献[8]进一步考虑了短距时零模波速变 化的影响,定位精度有所提升,但零模经由大地构成回路 的本质决定了,随距离增大其波速衰减严重,并不适用于 长距离线路。双端法通过线路两端测点的初始行波到达 时差确定故障点位置,无需识别反射波,相比于经典单端 法具有较强的可操作性[9-10]。但在测点间距较长时,双 端法将受线模波速衰减的影响测距精度下降,而且对 测点的采集精度要求较高,任一端测点波头捕获失败 都将导致定位失败。融合广域多源的行波信号能够有 效避免这种情况、进一步提升故障定位精度和稳定性, 文献[11]借助网络化的思想融合了多端信息,在含有 大量 T 型结构的网络中表现良好,但并不适用于含环 网络:文献[12-14]对网络中故障线路两端的多个测点 两两组合依次进行双端法测距,并进而综合多个双端 测距结果实现多端融合测距,即使个别点信号捕获失 败仍然能借助多源测点实现定位和精度矫正,但其融 合各双端测距结果的权重仅取决于双端链路上变电站 的个数,并未考虑测点间物理距离和电网拓扑等因素, 某些场景中甚至可能不如融合前准确。总的来看,目 前的定位方法对波速变化的影响考虑较少,对电网拓 扑结构利用不足,尚缺乏一种能够结合网络拓扑、自适 应地调整不同故障位置下各行波测点重要度的多源行 波信息融合定位方法。

广域网络的故障测距需要以准确获知故障线路为前 提,而上述方法大多依据继电保护信息确定故障线路,但 继电保护告警存在误报、漏报的情况,且保护装置和断路 器又有误动、拒动的可能[15],随着风电等新能源系统的 接入,该问题进一步突出[16-17]。为了独立于继电保护信 息建立故障定位模型,文献[14]将模量波速差推广到故 障线路判定中,但同样未考虑长距离线路的零模波速衰 减问题;文献[18]采用故障行波时差信息构建故障分支 判定矩阵解决多分支线路的故障定线问题,但不适用于 环网的场景;文献[19]认为全网行波到达时差最小的两 测点间线路可确定为故障线路。近来,在配电网的故障 定位领域,有研究从全新的视角出发将故障线路判定转 化为分类问题,采用支持向量机^[20]、人工神经网络^[21]和 卷积神经网络^[22]等机器学习方法确定故障线路,尽管这 些方法尚未考虑电网的拓扑结构,但这种数据驱动的方 式展现出了不错的故障洗线准确性和操作便捷性,对输 电网的故障选线具有较好的借鉴意义。

电力系统中的行波测点(节点)与架空线(边)构成 了天然的图数据结构。输电线路发生故障时,故障行波 沿着架空线经多次折反射到达各测点处的混合叠加,各 测点的行波波形既表现出与电网的拓扑结构相关,又蕴 含着与故障点之间复杂的非线性关联。图神经网络正是 一种建模图数据中复杂关联性的新型机器学习方法,主 要包括图卷积网络(graph convolutional network, GCN)^[23]和图注意力网络(graph attention network, GAT)^[24]等。其中,GAT既能够学习图中各节点的固有 特征,又可以借助注意力机制从拓扑结构中自适应地挖 掘节点间的关联度,特别适用于综合广域内多源行波信 号与故障点的非线性关联,获得更加稳健、鲁棒的输电网 故障线路判定模型,而输出的关联度经进一步处理可以 用于科学地融合多源测点实现精准的故障定位。

因此,本文提出了广域行波信息与图注意力网络相结 合的输电网故障定位方法。该方法采用行波测点(节点) 与架空线(边)构建图结构,行波信号的本征模态分量作为 节点特征以突出行波波头的瞬变特性;基于 GAT 层和边收 缩图池化(edge contraction pooling, EdgePool)层搭建 GAT 网络,该网络能够利用广域测点的拓扑连接关系自适应地 挖掘行波特征、识别故障线路。根据故障线路的识别结 果,将该线路两端测点及其一阶邻接测点组成的局部子图 解构为多条跨越故障线路的链路,并基于 GAT 输出的注意 力边权重综合所有链路的定位结果测算精确的故障点位 置。仿真结果表明,该方法能够准确地定位复杂网络中的 多种故障,具有较高的测距精度和可靠性。

1 故障行波信号的分解

电力线路中的故障暂态行波会在波阻抗不连续点发 生折、反射,使得测点处的行波检测信号表现出突变性和 奇异性,且在信号突变点处蕴含着重要的网络结构信息 和故障位置信息。

考虑到行波线模量的波速较为稳定,有利于通过行 波时差测定故障位置^[4],因此全文的分析均采用线模量 进行。对检测到的线模量进行模态分解,可以滤除基频 带信号和噪声干扰,突出行波的瞬间突变。变分模态分 解(variational mode decomposition, VMD)算法是一种有 效的复杂信号分解算法,其实质是带约束的变分寻优,通 过反复迭代将复杂信号 U(t) 自适应地分解为多个本征 模态函数 $u_k(t)$,该变分问题的具体表达如下:

$$\begin{cases} \min_{|u_k|, |\omega_k|} \left\{ \sum_k \left\| \partial_t \left[\left(\delta(t) + \frac{j}{\pi t} \right) u_k(t) \right] e^{-j\omega_k t} \right\|_2^2 \right\} \\ \text{s. t.} \quad \sum u_k = U \end{cases}$$
(1)

式中: ω_k 是本征模态 $u_k(t)$ 的中心频率分量,K 为分解层

数,也即本征模态个数。采用交替方向乘子法可求解各 本征模态,详细的求解可参考文献[25]。

为了选择最优的分解层数 K 和表征行波突变性的本 征模态 u_k,对不同信噪比的行波信号分别进行 3、4 层分 解,如图 1 所示。在 3 层分解中(如图 1(a)所示),本征 模态 u₁ 易受噪声影响,低信噪比下被噪声淹没,u₂ 在不 同噪声水平下保持一致,且局部极大值与行波波形的突 变位置一一对应,能反映行波的到达时刻;行波的 4 层分 解(如图 1(b)所示)存在明显的不确定性,各本征模态在 不同噪声水平下无法得到一致性表示;多次实验发现,进 一步增加分解层数,均会受到噪声影响而出现各本征模 态不一致的问题。因此,选择 3 层分解的 VMD 本征模态 u₂ 可以有效地表征故障行波,且相比于原波形局部突变 更为清晰可辨、位置信息更加明确。

2 广域行波信息和图注意力网络相结合的 故障定位方法

当电力系统中发生线路故障时,故障行波将沿着输 电线路向全网传播。由于输电网拓扑结构复杂,故障行 波到达电网各测点的传播路径和折反射情况各不相同, 各测点处行波与故障点位置构成了不同的复杂非线性映 射。若借助电力系统拓扑结构融合利用广域内的多样性 非线性关联,对于提高输电线路故障定位精度将大有裨 益。因此,本文提出广域行波信息与 GAT 相结合的输电 网故障定位模型,主要由广域行波图数据构建、GAT 网络 判定故障线路和自适应多端融合测距 3 部分组成,流程 如图 2 所示。

Fig. 2 Fault location model of transmission network combining wide-area traveling wave information and GAT

2.1 广域行波图数据构建

行波测点通常安装于电力网络的母线处,与架空 线构成天然的拓扑结构,分别作为图数据的节点(行波 测点)和连接边(架空线)。设输电网中存在 n 个行波 测点,按照各测点在电网中的位置进行拓扑连接,可形 成广域行波信息的 n 节点图数据。对于任意测点 ν_i ,其 节点特征按照如下方式获取:首先依据第 1 节原理获 得所采集行波信号的本征模态 $u_2(1\ 000\ 个采样点);之$ 后,将各本征模态分割成 50 个能量块并累积;最后进行"最大-最小值"归一化,即获得广域行波图数据的节 $点特征 <math>h_i$ 。

2.2 GAT 网络判定故障线路

本节采用的 GAT 网络由 GAT 层和 EdgePool 层两部 分组成,旨在自主挖掘广域内行波特征、学习多测点与故 障线路之间的非线性关系,融合利用广域行波信息获得 了故障判线推理的强有力证据。

1)GAT 层

GAT 层能够根据注意力机制,自适应地计算测点间 测点的邻接权重,并聚合局部域的行波特征,提取重要的 潜在信息,原理如图 3 所示。设行波测点 ν_i 的一阶邻居 集合 $\nu = \{\nu_1, \dots, \nu_j, \dots, \nu_K, \nu_i\}$,其本身也视为邻居; $W \in R^{F\times F}$ 表示对该图节点进行特征变换,F'为特征的输 出维度,其计算步骤如下;

图 3 GAT 层原理图 Fig. 3 Schematic diagram of GAT layer

(1) 自适应权重。自适应权重也称注意力系数,表 征各相邻节点特征的关联性强弱。GAT 通过一神经网络 (激活函数为 *Leaky* ReLU)学习测点 ν_i 和任一相邻测点 ν_j 的自适应权重 α_{ii} :

 $\alpha_{ij} = \text{softmax}(Leaky\text{ReLU}(a^{T}[Wh_{i} || Wh_{j}]))$ (2) 式中: $a \in R^{2P}$ 为神经网络的可学习权重;"||"表示两张 量拼接;softmax 函数将 α_{ij} 归一化到 0~1 之间。

自适应权重可以反映局部区域内行波在电网中的传输路径,与电网拓扑结构、距离和波速相关,某测点与邻居的权重越高,表示行波经过两测点的正向传播路径和波速越接近,反之则更远。经进一步处理,可用于实现多端融合测距(如2.3节所述)。

(2)邻居测点的行波信息聚合。将ν_i各邻居节点的自适应权重作为加权系数对节点的邻居节点进行聚合,实现局域内多源的行波定位信息向中心节点的传播, 有利于获得更加全面的定位相关特征。多源信息汇聚后的行波特征为:

$$\boldsymbol{h}_{i}^{\prime} = \operatorname{ReLU}\left(\sum_{v_{j} \in \nu} \alpha_{ij} \boldsymbol{W} \boldsymbol{h}_{j}\right)$$
(3)

2) Edgepool 层

Edgepool 是一种基于边收缩变换的层次图池化方

法^[26],该方法以边为基准迭代式地对线路上两相邻测点的行波特征进行归并,从而逐渐提取更广域范围内中的 行波信息,主要流程如下:

(1) 计算各边得分。将节点间的单边进行双向复制,并从各边的局部邻居出发计算边的得分 s_{ij},计算公式与1) 中 α_{ii} 类似,不再赘述;

(2)收缩。对 s_{ij}进行排序,并依次选择得分最高且 未被归并的相邻节点进行收缩融合,形成新节点。如 图 4 所示,经步骤(1), v_i和 v_j的边得分最高,故首先被 归并形成新节点;之后, v₁和 v₂的得分 0.75 是最高且未 被归并的节点,故 v₁和 v₂ 合并。

图 4 边收缩示意图 Fig. 4 Schematic diagram of edge contraction

(3)节点特征更新。对合并后的新节点 v_{ij}采用相 加求和的方式获得节点特征:

通过多层"GAT 层+Edgpool 层"的渐进式挖掘,可以 逐步扩大局部感受野,聚合到更广域、更全面、更深层的 行波特征;最后输出故障线路标签,建模了广域内多源行 波信息到故障线路的映射。经大量实验调整,GAT 模型 各层设置如表1所示。训练中,损失函数为交叉熵损失, 采用 Adam 求解器,学习率为0.001,矩估计因子 β₁ 和 β₂ 分别为0.5 和0.999。网络采用小批量训练方式,批量数 为 50,epoch 为 100 次。

表 1 GAT 模型的网络结构及参数设置

Table 1 Network structure and parameters of GAT model

层数	结构	输出维度
1	Input 层	50
2	GAT 层+Edgepool 层, 激活函数 ReLU,Dropout=0.4	256
3	GAT 层+Edgepool 层, 激活函数 ReLU,Dropout=0.4	256
4	读出层	512
5	全连接层,激活函数 ReLU	256
6	全连接层,激活函数 Softmax	22

2.3 自适应多端融合测距

如图 2 所示,根据 GAT 模型的识别结果,可以将故障点初步锁定于两母线间的输电线路上。进一步地,选择故障线路的双端测点及其一阶邻接测点构成多条测距链路,并借助 GAT 输出的自适应权重融合不同链路上的测距结果、增强故障测距的鲁棒性和准确性。

 对各测点行波信号的本征模态 u₂(t)引入 Teager 能量算子,进一步突显行波的瞬时突变、准确标定首波到 达时刻:

 $\psi[u_2(t)] = u'_2(t)^2 - u_2(t)u''_2(t)$ (5) 式中: u'_2(t) 和 u''_2(t) 分别为 u_2(t) 的一、二阶导数。

2) 计算故障线路任意一阶链路两端测点(即任意经过故障线路可相连的测点,如图2中h和g)的行波到达时差 Δt_{ha},继而利用双端法计算故障距离并折算到h端:

$$d'_{hg} = \frac{1}{2} (\Delta t_{hg} \cdot c + l_{gh})$$
(6)

式中:c为行波线模波速;l,,,为测点h和g之间的电气距离。

3) 计算任意 i-j 链路的权重 W_{ij} 。链路上传播距离 越长、波速越慢,该链路的测距误差就越大,则在融合测 距中的重要性就越小。将 GAT 计算的自适应权重除去 自身权重 α_{ii} 后重新归一化获得链路中各边的权重 ω_{0} 由于 ω 计及了距离和波速的影响,其累积值 W_{ij} 能够衡 量该链路的重要程度。

4) 多链路测距结果加权平均获得最终结果 d_a:

$$d_{p} = \frac{\sum \sum (W_{hg} \cdot d'_{hg})}{\sum \sum W_{hg}}$$
(7)

3 仿真验证

3.1 仿真介绍

为了验证本文所提方法的有效性,在 PSCAD/ EMTDC 中搭建如图 5 所示的 110 kV 区域性输电线路。 输电线路模型采用频率相关相域模型,能够精确仿真长 距离下的行波波速变化。全网共 19 个母线,22 条线路, 各线路长度如图所示(单位:km),在各母线处安装行波 采样测点。母线 10、13、16 处接入光伏和风电等新能源 机组,其余电源表示该输电系统通过变压器与其他等级 的电网相连接。

对每条线路模拟 144 次单相接地故障,故障位置在 线路上均匀分布,故障初相角 δ 为 75°~105°的随机值, 接地电阻 Z 为 0~100 Ω 每 10 Ω 递增。各测点同步采 样,采用波头最先到达的测点为基准,截取到达前 0.05 ms 和到达后 0.95 ms 所有三相母线电压,并通过凯 伦贝尔变换获得行波线模量,采样率为 1 MHz。为了模拟 现场复杂的电磁环境干扰,对所有行波数据增加 30 dB 随 机噪声,并按照 2.3 节 1)所述流程进行数据预处理,共形

成 22 类、3 168 个图数据样本(用于 GAT 模型的训练和测试),训练集、验证集和测试集分别占比 0.6:0.2:0.2。

3.2 GAT 模型性能评估

1)特征可视化与故障线路识别

GAT 模型的特征提取能力是保障其正确甄别故障线路的前提,本处采用 $t - \beta$ 布随机邻域嵌入算法(t-distributed stochastic neighbor embedding, t-SNE)将模型的第一和第二 GAT 层的高维度输出可视化于二维空间,不同故障线路的样本特征采用不同颜色进行标记,以直观地展示特征的可分离程度,如图 6 所示。

each GAT layer

从图 6 中可以看出,在第一 GAT 层的输出空间中, 部分故障线路上的样本特征存在交叠,特征的分离程度 不高;经第二 GAT 层进一步深化行波特征和网络拓扑信 息,同一线路的样本聚集成簇,不同线路样本相互分离, 表现出较好的可分性。因此,经两层 GAT 处理,模型可 以充分提取广域网络中的行波信息、保障故障线路识别 的准确性。

为了全面评价 GAT 模型的故障线路识别能力,本文选用识别率 R、漏判率 MA、错判率 FA 和三级指标 G-mean 评价模型性能。各指标计算公式如下:

$$R = \frac{\sum_{c} TP_{c}}{TP_{c} + FP_{c} + FN_{c} + TN_{c}}$$
(8)

$$MA = \sum_{c} \frac{FP_{c}}{TN_{c} + FP_{c}} / C$$
(9)

$$FA = \sum_{c} \frac{FN_{c}}{FN_{c} + TP_{c}} / C$$
(10)

$$G - mean = \sum$$

$$\sqrt{\left(1 - \frac{FP_c}{TN_c + FP_c}\right)\left(1 - \frac{FN_c}{FN_c + TP_c}\right)} / C \tag{11}$$

Х

式中:TP。表示故障线路 c 中识别正确的样本;FP。表示 故障线路 c 中识别错误的样本;FN。表示被误判为故障 线路 c 的其他线路样本;TN。表示其他线路识别正确的 样本;C 表示全网线路总数。

采用不同噪声水平的测试集分别进行故障线路识 别,结果如表2所示。可以看出,信噪比高于 30 dB 时, 该模型对故障线路有较高的识别准确性,识别率达到 98%以上,仅极少数样本识别错误,可以满足故障定位的 要求;随着噪声进一步增大(20 dB),识别准确性下降,这 主要是因为在如此高的噪声下,行波的本征模态 u₂ 被淹 没,已不足以表征行波的突变性和在复杂电网中的传播 特性;采用简单的均值滤波算法去除部分噪声,识别率达 到 94.09%,较去噪前提升 5.9%,若匹配以更为有效的去 噪技术有望恢复到最优性能。综合来看,GAT 模型具有 优异的故障线路判定能力,且采用的 30 dB 信噪比相对 于现有研究中普遍考虑的 50 dB 已较为严苛,能够适应 复杂的环境干扰,具有较强的鲁棒性。而且,该方法不依 赖于继电保护信息,不受保护装置拒动和误动的影响,又 可与继保信息互为校验,提高故障定位可靠性。

2) 模型对比分析

为了体现 GAT 模型识别故障线路的优越性,本节将 该模型与支持向量机(support vector machine, SVM)、随 机森林(random forest, RF)、深度神经网络(deep neural network, DNN)和卷积神经网络(convolutional neural network, CNN)等常见分类模型进行对比。其中,SVM 的 核函数为径向基函数,采用网格搜索确定核参数 σ 为1、

表 2 不同信噪比下的故障线路识别准确性评估 Table 2 Accuracy evaluation of fault line identification under different SNRs

唱言		评价指	6标/%	
味戶	R	MA	FA	G-mean
无噪声	98.42	1.94	1.87	98.38
40 dB	98.03	2.07	2.00	97.85
30 dB	98.42	1.48	1.54	98.43
20 dB	88.19	11.56	8.83	89.07
20 dB(去噪)	94.09	5.61	5.64	94.16

惩罚因子为 20; RF 模型的决策树个数为 1 000 个; DNN 网络结构为 256-128-64-22, CNN 采用经典的 LeNet-5 结构,卷积核为 3×3, 两卷积层的卷积核数为 32~64, 两全连接层神经元个数 128~64, 两者均迭代 100 次, 激活函数和优化器与 GAT 模型一致。对于各分类模型的输入,前三者将各测点的行波信息拼接成一维长向量(1×950), CNN 则拼接成二维矩阵(19×50)。

各分类模型的故障线路识别情况如表 3 所示。 SVM、RF和 DNN采用了相同的行波信息输入形式,由 于 DNN 具有端到端的深度特征提取能力,能够自主学 习到高可分性的特征表示,因此识别率较 SVM 和 RF 提升近 3%;尽管 CNN 具有优越的二维信息的局部特 征提取能力,但其特征提取过程无法考虑行波特征在 网络拓扑空间上的关联性,而且行波二维矩阵的局部 区域很可能是无或弱拓扑连接的测点信息,因此识别 率并不高,较 GAT 低 3.93%;本文 GAT 模型能够结合 输电网络拓扑,实现广域内多源行波信息的交叉传播 和特征挖掘,逐渐将各测点中蕴含的故障位置信息汇 聚,从而获得了故障判线推理的强有力证据,因此具有 最优的识别能力。

表 3 不同分类模型的性能对比 Table 3 Performance comparison of different models

方法	评价指标/%						
	R	MA	FA	G-mean			
SVM	93.31	6. 25	2. 58	95.18			
RF	93.70	6.01	4.66	94.40			
DNN	96.06	4. 55	2.69	95.99			
CNN	94.49	4. 92	3.05	93.92			
GAT	98.42	1.48	1.54	98.43			

进一步地,将本文 GAT 层+ Edgepool 层的方法与图 神经网络中常见的 GCN 层和自注意力图池化(selfattention graph pooling, SAGPool)层^[27]的不同组合进行 对比。各对照模型采用如本文 GAT 模型的双层结构构 建,均具有基于网络拓扑的建模能力。各模型训练过程 中验证集的识别率曲线如图 7 所示,可以直观地看出,本 文的 GAT+EdgePool 方案识别率上升快,收敛精度高、收 敛过程平稳。

各模型详细的评价指标对比如表 4 所示。其中, GCN 层的边权重通过图的拉普拉斯矩阵^[23]构建(节点直 接相连为 1,否则为 0),而所采用的输电网结构中各节点 的相邻节点较少且基本相差不大,因此在节点特征聚合 中相邻节点被认为同等重要,节点特征趋于同质,对行波 特征的表征能力受到限制,因此两种池化下的识别率均 低于 GAT 层。相比于 GCN 层,GAT 层可以根据相邻节 点特征和网络拓扑自主更新边权重,权重高的连接信息 在特征聚合时被重点加工。GAT 层的两种池化组合下,与 SAGPool 的组合模型略逊色于与 EdgePool 的组合。可能 是因为,SAGPool 通过注意力机制去除网络中部分测点,存 在信息丢失,比较适合于测点众多的大型图结构,对本文 较少测点的网架存在全局表征能力不足;EdgPool 层则通 过依次归并两相邻节点的方式捕获更加全局的特征表示, 所有的行波信息共同影响着最终的故障线路确定。

表 4	不同图神经网络模型对比	

Table 4	Comprison of	different graph	neural	networks
---------	--------------	-----------------	--------	----------

半和日	图池化层 —	评价指标/%				
仓叭広		R	MA	FA	G-mean	
GCN	SAGPool	96.06	4.07	4.26	95.65	
	Edgepool	93.70	6.14	5.23	94.11	
GAT	SAGPool	95.67	4.51	4.04	95.60	
	Edgepool	98.43	1.48	1.54	98.43	

3.3 故障测距分析

1)故障测距算例

以图 5 所示的故障点 F₅ 为例,该点位于线路 3-5 上,距离测点 3 处 40 km,故障为单相接地故障。同步采 集全网各测点的行波检测信号,并运用训练稳定的 GAT 模型识别故障线路。根据识别结果,判定该故障发生在 线路 3-5 之间,与实际情况一致。接下来在线路 3-5 上 进行故障测距。测点 3、5 及其一阶邻接测点 2、4 和 6 的 行波到达时间标定如图 8 所示,可以快速计算各点的波 达时差。图 9 为测点 3、5 及其一阶邻居构成的局部图结 构,图中各边权重为 GAT 模型第一 GAT 层输出的自适应 权重。由于该区域为环形网络,测点 4 为 3 和 5 的共有 邻居,应进行解环:根据测点 3、5 的波达时差,可采用双 端法初步测算故障点距离 3 测点 40.096 km,而线路 3-4 和 4-5 分别为 30 和 40 km,可判定测点 4 的首波应经由 测点 5 到达,所以将 3 和 4 的连接断开。

解环后,该域可解构为 $L_1 \sim L_6$ 共 6 个跨越 3-5 的一 阶链路(如图 9 所示),链路权重为链路上各边权重的累 积。利用双端法依次对 6 条一阶链路进行测距并转化为 到测点 3 的距离,分别为 40.095、39.788、40.18、40.264、 39.872 和 39.956 km。最后,对多测点的测距结果按照 式(9)加权平均,确定故障距离为 40.048 km,测距误差 仅为 48 m,测距结果比仅采用测点 3、5 的 40.095 km 更 加准确。

图 9 局部图结构和故障线路的一阶链路 Fig. 9 Sub-graph and first-order links across the fault line

为进一步展示本文方法的测距准确性,随机、分散地 在输电网的多个不同位置 *F*₁~*F*₆ 设置单相接地故障开 展实验(如图 5 所示)。各故障位置及其定位结果如表 5 所示,本文方法具有可靠的故障线路识别能力,识别结果 均与实际故障情况相吻合;测距误差均小于 100 m,表现 出了较高的测距准确性和稳定性。

表 5 不同故障点的故障定位实验结果 Table 5 Experimental results of different fault points

故障点	实际位置/km	Z/Ω	δ	定位结果/km	误差/m
F_1	[1-2, 10.0]	20	90	[1-2, 10.031]	+31
F_{2}	[1-11, 23.0]	30	75	[1-11, 22.993]	-7
F_3	[14-15, 8.0]	50	82	[14-15, 8.031]	+31
F_4	[2-3, 6.0]	70	77	[2-3, 6.093]	+93
F_5	[3-5, 40.0]	90	82	[3-5, 40.048]	+48
F_{6}	[5-6,7.0]	100	105	[5-6, 7.012]	+12

2)不同故障类型的适应性分析

输电网的常见故障类型主要包括单相接地(Ⅱ)、两 相接地(Ⅱ)、两相相间短路(Ⅲ)和三相接地(Ⅳ),有效 的故障定位算法应当在不同故障类型下均有准确定位的 能力。图 10 以故障点 *F*,为例,给出了 4 种故障下前 16 号测点的行波本征模态,可以看出,同一故障点发生 不同类型故障时,经过本文算法标定波头,各类型的故障 行波波头到达时刻是基本一致的,这表明该方法具备优 异的适应网络化的定位算法和较强故障类型容忍能力, 为准确定位不同类型的故障提供了坚实的基础。

Fig. 10 Comparison of traveling waves under different fault types

为了定量地分析本文方法在不同故障类型下的有效 性和优越性,本处与模量波速差法^[8]、双端法^[10]、传统多 端法^[12]进行对比分析。表6中详细给出了*F*₁、*F*,和*F*₆

发生不同故障时的定位结果对比。从中可以看出,模量 波速差法无法对两相短路和三相短路进行定位,这是因 为该类故障下无零模量定位无法实施,而且由于接地故 障零模色散严重,对单相接地和两相接地故障的测距误 差较大,在144~231 m之间;后3种方法均基于线模分量 讲行定位.各类型故障下线模量均存在且波速相对稳定, 所以能够实现多类型的故障测距;双端法在直线支路故 障点 F_1 和 F_6 上表现出不错的故障定位能力,误差仅在 100 m 以内,但在环形支路故障 F₆ 处,由于线路两端均 接有较多出线,行波在此处折反射能量损失较大导致波 头陡度下降,误差增大到 200 m 左右;传统多端法和本文 方法展现出了最为稳定的定位性能和故障容忍能力,误 差均在100m以内,证明了融合利用广域内的多源行波 信息可以一定程度上抵抗部分测点误差导致的定位不准 和不稳定问题。相较之下,本文的自适应权重能够综合 距离、波速、拓扑结构等因素合理地表征各测点信息对故 障定位的重要程度,因此本文的定位精度更为突出,这一 优势将在减少测点的情况下更加明显。

3)减少行波测点对测距精度的影响

在保证全网故障可测的前提下,优化网络中行波测 点的安装配置,可以减少安装费用,提高运行经济性。对 图 5 中的行波测点进行优化配置,规则如下:(1)电网中 所有电源处的边界测点应尽可能保留;(2)电网内部双 分支母线处的测点可以取消;(3)内部所有分支数大于 等于 3 的母线处测点应保留。在此规则下,最大限度地 移除测点,最终仅保留母线 1、3、5、7、9、10、11、13、16 和 19 共 10 处测点,移除率近 50%。在该结构下构造图数 据并重新训练 GAT 模型,模型在测试集上的故障线路识 别率 R、漏判率 MA、错判率 FA 和三级指标 G-mean 分别 为 97.64%、1.99%、1.90% 和 98.02%,与减少测点前识 别能力基本一致。各方法的定位误差对比如表 7 所示。

当网络中测点稀疏化后,测点间距增大,行波法必须 考虑波速变化带来的影响。对模量波速差法而言,距离 较长时,零模分量色散比线模严重得多波速衰减很大,所 以波速差法关于零模波速稳定不变的假定失效,测距误 差较大。双端法在测点间距较长时线模分量速度的衰减 也不容忽视,因此误差相比表6测点较为密集时有所增 大。传统多端法同样未合理考虑行波速度衰减权重,而 且仅简单地将两两测点间变电站个数的倒数作为融合多 端测点时的贡献程度,这样粗糙的贡献程度未能考虑线 路距离、网络拓扑结构等诸多因素,融合的结果可能反而 不如双端的测距结果准确,如表6中F₁和F₆故障点即 为此情况;本文方法考虑了电网拓扑结构,借助GAT 网 络进行故障定位任务建模,建模的行波数据计及了长距 离下的波速衰减,故针对故障点自适应计算的各测点重 要度能够满足行波的物理特性,使得广域内多源行波信

Table 0 Elocation results in unrefert fault types										
故障点 & 故障		模量波速差法		双端法	双端法		传统多端法		本文方法	
位置/km	类型	定位/km	误差/m	定位/km	误差/m	定位/km	误差/m	定位/km	误差/m	
	Ι	[1-2, 10.183]	+183	[1-2, 10.002]	+2	[1-2, 10.065]	65	[1-2, 10.031]	+31	
F_{1}	П	[1-2, 9.769]	-231	[1-2, 10.056]	+56	[1-2, 9.932]	-68	[1-2, 9.986]	-14	
[1-2, 10.0]	Ш	-	-	[1-2, 9.930]	-70	[1-2, 10.093]	93	[1-2, 10.087]	+87	
	IV	_	-	[1-2, 10.980]	-20	[1-2, 10.082]	82	[1-2, 10.075]	+75	
	Ι	[3-5,40.169]	+169	[3-5, 40.170]	+170	[3-5, 40.065]	65	[3-5, 40.048]	+48	
F_5	П	[3-5,40.205]	+205	[3-5, 40.179]	+179	[3-5,40.074]	74	[3-5, 40.058]	+58	
[3-5, 40.0]	Ш	_	-	[3-5, 40.220]	+220	[3-5, 39.939]	-61	[3-5, 40.054]	+54	
	IV	-	-	[3-5, 40.220]	+220	[3-5, 39.934]	-66	[3-5, 40.048]	+48	
	Ι	[5-6, 6.856]	-144	[5-6, 7.014]	+14	[5-6, 7.038]	38	[5-7,7.012]	+12	
F_{6}	П	[5-6, 6.856]	-144	[5-6, 7.045]	+45	[5-6, 6.958]	-42	[5-7,7.018]	+18	
[5-6,7.0]	Ш	-	-	[5-6, 7.014]	+14	[5-6, 7.043]	43	[5-7,7.015]	+15	
	IV	-	-	[5-6, 7.036]	+36	[5-6, 7.033]	33	[5-7,7.016]	+16	

表 6 不同故障类型情况下的定位结果 Table 6 Location results in different fault types

表 7 减少行波测点后的故障测距能力

 Table 7 Reduces fault location capability after traveling wave measurement points

故障点	测距误差/m						
	模量波速差法	双端法	传统多端法	本文方法			
F_1	-546	+120	+130	+98			
F_2	-226	+212	+96	+35			
F_3	+233	+132	-67	-40			
F_4	-149	-131	+120	+95			
F_5	+376	+229	-75	-50			
F_6	-195	-97	+158	+87			

息的融合更加科学,因此各故障点下的定位结果均优于 对比方法,验证了本文方法的优越性。

4 结 论

为了充分利用广域网络中的分布式行波测量信息和 各测点的拓扑连接,本文提出了广域行波信息与图注意 力网络(GAT)相结合的输电网故障定位方法,通过 PSCAD/EMTDC搭建仿真平台对该方法有效性进行验 证,主要工作和结论如下:

1)利用三层 VMD 分解的本征模态,可以有效地表示 行波检测信号的突变性及其传播特性。全网行波测点的 检测信号具有拓扑关联关系,将行波的本征模态作为节 点特征、测点间的输电线路作为边,可以构建广域行波的 图数据样本。 2)为了融合广域行波信息和行波测点的拓扑关 联,采用 GAT 构建模型将输电的故障线路判定转化为 多分类问题。该模型考虑了行波测点的拓扑连接,更 符合全网行波信息的时空特性,相较于 DNN 和 CNN 等 仅挖掘行波信息的深度学习方法,识别率分别提高 2% 和 4%。

3)采用双端法依次对故障线路及其所有一阶链路进 行测距,并通过加权平均融合所有定位结果,加和权重基 于 GAT 输出的自适应权重确定,较模量波速差、双端法 和传统多端法具有更高的精度和稳定性。

4)该方法可以适用于多种常见的故障类型,且在合理的配置原则下减少测点并不明显影响定位精度,具有良好的经济性。同时,该方法不依赖于继电保护信息,不受保护装置拒动和误动的影响,又可与继保信息互为校验,提高故障定位可靠性。

参考文献

- [1] 和敬涵,罗国敏,程梦晓,等.新一代人工智能在电力系统故障分析及定位中的研究综述[J]中国电机工程学报,2020,40(17):5506-5516.
 HE J H, LUO G M, CHEN M X, et al. A research review on application of artificial intelligence in power system fault analysis and location[J]. Proceedings of the CSEE, 2020,40(17):5506-5516.
 [2] 彭华,朱永利,袁胜辉.风电场集电线路单相接地故
- [2] 彭华, 禾水利, 泉胜阵. 风电场集电线路里相接地战 障组合测距[J]. 仪器仪表学报, 2020, 41(9): 88-97.

PENG H, ZHU Y L, YUAN SH H. Combined fault location for single phase grounding of wind farm collection line[J]. Chinese Journal of Scientific Instrument, 2020, 41(9): 88-97.

[3] 刘亮,曾祥君,邓名高,等. 基于线路归一和网络解耦的配网故障测距方法[J]. 仪器仪表学报, 2018, 39(1):243-249.

LIU L, ZENG X J, DENG M G, et al. Fault distance measurement method in distribution network based on line normalization and network decoupling [J]. Chinese Journal of Scientific Instrument, 2018, 39 (1): 243-249.

 [4] 徐耀松,徐才宝,唐维,等.基于GST-TT变换的单端 故障行波测距方法[J].电子测量与仪器学报,2020, 32(7):42-49;.

XU Y S, XU C B, TANG W, et al. Single-ended fault traveling wave ranging method based on GST-TT transform[J]. Journal of Electronic Measurement and Instrumentation, 2020, 32(7): 42-49.

- [5] LOPES F V, SILVA K M, COSTA F B, et al. Real-time traveling wave-based fault location using two-terminal unsynchronized data [J]. IEEE Transactions on Power Delivery, 2015, 30(3): 1067-1076.
- [6] MARDIANA R, MOTAIRY H A, SU C Q. Ground fault location on a transmission line using high-frequency transient voltages [J]. IEEE Transactions on Power Delivery, 2011, 26(2): 1298-1299.
- [7] 王珺,董新洲,施慎行.考虑参数依频变化特性的辐射状架空配电线路行波传播研究[J].中国电机工程 学报,2013,33(22):96-102.

WANG J, DONG X ZH, SHI SH X. Traveling wave transmission research for overhead lines of radial distribution power systems considering frequency characteristics [J]. Proceedings of the CSEE, 2013, 33(22): 96-102.

 [8] 宁一,王大志,江雪晨,等. 基于零模行波波速特性的 配电网单相接地故障测距方法[J]. 中国电机工程学 报,2015,35(S1):93-98.
 NING Y, WANG D ZH, JIANG X CH, et al. A single

phase-to-ground fault location scheme for distribution networks based on zero-mode traveling wave velocity property[J]. Proceedings of the CSEE, 2015, 35(S1): 93-98.

[9] 黄元亮,郝真真,姜甜甜.一种新的输电线路双端行波故障定位算法[J].电子测量与仪器学报,2016,30(1):20-29.
 HUANG Y L, HAO ZH ZH, JIANG T T, et al. Novel

two-terminal travelling wave fault location algorithm for transmission line [J]. Journal of Electronic Measurement and Instrumentation, 2016, 30(1): 20-29.

- [10] 刘晓军,岳爽,赵妍,等.基于 VMD-SMMG 变换的微 弱行波双端测距研究[J].电网技术,2019,43(10): 3841-3847.
 LIU X J, YUE SH, ZHAO Y, et al. Research on weak traveling wave location based on VMD-SMMG transform[J]. Power System Technology, 2019, 43(10): 3841-3847.
- [11] 范新桥,朱永利. 基于双端行波原理的多端输电线路 故障定位新方法[J]. 电网技术, 2013, 37(1): 261-269.
 FAN X Q, ZHU Y L. A novel fault location scheme for multi-terminal transmission lines based on principle of double-ended traveling wave [J]. Power System
- [12] 李泽文, 唐平, 曾祥君, 等. 基于 Dijkstra 算法的电网 故障行波定位方法[J]. 电力系统自动化, 2018, 42(18): 162-168.
 LI Z W, TANG P, ZENG X J, et al. Method of traveling wave fault location based on Dijkstra algorithm in power grid[J]. Automation of Electric Power Systems, 2018, 42(18): 162-168.

Technology, 2013, 37(1): 261-269.

- [13] LI Z, ZENG X, YAO J, et al. Wide area traveling wave based power grid fault network location method [J]. International Journal of Electrical Power and Energy Systems, 2014, 63: 173-177.
- [14] 李振兴, 吴李群, 田斌, 等. 采用区域电网多点测量 信息的故障行波定位[J]. 电力系统自动化, 2017, 41(8): 146-152.
 LI ZH X, WU L Q, TIAN B, et al. Traveling wave fault location using multi-point measurement information of region power grid [J]. Automation of Electric Power Systems, 2017, 41(8): 146-152.
- [15] 韩迎春,童晓阳,等. 基于动态推理链的电网故障诊断方法[J]. 电网技术, 2017, 41(4): 310-319.
 HAN Y CH, TONG X Y, et al. Power system fault diagnosis based on dynamic reasoning chain[J]. Power System Technology, 2017, 41(4): 310-319.
- [16] 贾科,郑黎明,毕天姝,等. 基于余弦相似度的风电场站送出线路纵联保护[J].中国电机工程学报,2019,39(21):6263-6274.
 JIA K, ZHENG L M, BI T SH, et al. Pilot protection based on cosine similarity for transmission line connected to wind farms [J]. Proceedings of the CSEE, 2019, 39(21):6263-6274.
- [17] 刘道兵,顾雪平,梁海平,等. 电网故障诊断完全解 析模型的解集评价与最优解求取[J]. 中国电机工程

学报, 2014, 34(31): 5668-5676.

LIU D B, GU X P, LIANG H P, et al. Solution evaluation and optimal solution discrimination of a complete analytical model for power system fault diagnosis[J]. Proceedings of the CSEE, 2014, 34(31): 5668-5676.

- [18] LI X, LUO L, LI YONG, et al. A traveling wave-based fault location method employing VMD-TEO for distribution network [J]. IEEE Transactions on Power Delivery, 2020, 35(4): 1987-1998.
- [19] LIANG R, PENG N, ZHOU L, et al. Fault location method in power network by applying accurate information of arrival time differences of modal traveling waves [J].
 IEEE Transactions on Industrial Informatics, 2020, 16(5): 3124-3132.
- [20] GASHTEROODKHANI O A, MAJIDI M, ETEZADI-AMOLI M, et al. A hybrid SVM-TT transform-based method for fault location in hybrid transmission lines with underground cables [J]. Electric Power Systems Research, 2019, 170(5): 205-214.
- [21] ADEWOLE A C, TZONEVA R, BEHARDIEN S. Distribution network fault section identification and fault location using wavelet entropy and neural networks [J]. Applied Soft Computing, 2016, 46: 296-306.
- [22] GAO J, GUO M, CHEN D. Fault line detection using waveform fusion and one-dimensional convolutional neural network in resonant grounding distribution systems [J].
 CSEE Journal of Power and Energy System, 2021, 7(2): 250-260.
- [23] GAMA F, MARQUES A G, LEUS G, et al. Convolutional neural network architectures for signals supported on graphs [J]. IEEE Transactions on Signal Processing, 2019,67(4):1034-1049.

- [24] VELIKOVI P, CUCURULL G, CASANOVA A, et al. Graph attention networks [J]. ArXiv Preprint, 2017, arXiv: 1710. 10903.
- [25] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition [J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
- [26] DIEHL F. Edge contraction pooling for graph neural networks [J]. ArXiv Preprint, 2019, arXiv: 1905.10990.
- [27] LEE J, LEE I, KANG J. Self-attention graph pooling[J]. ArXiv Preprint, 2019, arXiv: 1904.08082. 作者简介

张翼(通信作者),2017年于山东农业 大学获得学士学位,现为华北电力大学在读 博士研究生,主要研究方向为输变电设备在 线监测与故障诊断。

E-mail: dlgc_zy@163.com

Zhang Yi (Corresponding author) received his B. Sc. degree from Shandong Agricultural University in 2017. He is currently a Ph. D. student at North China Electric Power University. His main research interests include on-line monitoring, fault diagnosis of transmission, and transformation equipment.

朱永利,1992年于华北电力大学获得博 士学位,现为华北电力大学教授,博士生导 师,主要研究方向为电力系统网络化监控。 E-mail:yonglipw@163.com

Zhu Yongli received his Ph. D. degree from

North China Electric Power University in 1992. He is currently a professor and a Ph. D. advisor at North China Electric Power University. His main research interest is network monitoring of power system.