DOI: 10. 19650/j. cnki. cjsi. J2107342

基于变分模态分解与集成深度模型的 锂电池剩余寿命预测方法*

王 冉1,后麒麟2,石如玉1,周雁翔1,胡 雄1

(1. 上海海事大学物流工程学院 上海 201306; 2. 上海航空测试技术研究所故障诊断与 健康管理技术航空科技重点实验室 上海 201601)

摘 要:锂电池剩余寿命(RUL)预测对于锂电池安全使用至关重要。由于锂电池使用过程中存在容量再生现象和随机干扰等 因素,导致单一尺度信号下单一模型的预测精度及泛化性能较差。针对上述问题,提出一种新的基于变分模态分解(VMD)与 集成深度模型的锂电池剩余寿命预测方法。首先,采用变分模态分解将锂电池容量数据进行多尺度分解,得到信号的全局退化 趋势和局部随机波动分量;然后,分别采用多层感知机(MLP)和长短期记忆神经网络(LSTM)对全局退化趋势和各波动分量进 行建模;最后,将各个分量子模型的预测结果进行集成,获得最终的锂电池剩余寿命预测结果。实验结果表明,该方法具有较高 的预测精度与稳定性。

关键词: 锂电池剩余寿命预测;变分模态分解;长短期记忆神经网络;多层感知机;集成深度模型 中图分类号: TH165 TP206+.3 文献标识码: A 国家标准学科分类代码: 510.4030

Remaining useful life prediction method of lithium battery based on variational mode decomposition and integrated deep model

Wang Ran¹, Hou Qilin², Shi Ruyu¹, Zhou Yanxiang¹, Hu Xiong¹

(1. School of Logistics Engineering, Shanghai Maritime University, Shanghai 201306, China; 2. Aviation Key Laboratory of Science and Technology on Fault Diagnosis and Health Management, Shanghai Aero Measurement & Control Technology Research Institute, Shanghai 201601, China)

Abstract: Remaining useful life (RUL) prediction of lithium battery is very important for the safe using of lithium batteries. Due to the capacity regeneration phenomenon and random interferences in the using process of lithium batteries, the prediction accuracy and generalization performance of a single model with a single-scale signal are relatively poor. Aiming at these problems, a new RUL prediction method based on variational mode decomposition (VMD) and integrated deep model is proposed. Firstly, VMD is used to decompose the lithium battery capacity data to obtain the global degradation trend of the signal and the local random fluctuation components in multiple scales. Then, the global degradation trend and various fluctuation components are modeled using multilayer perceptron (MLP) and long short-term memory (LSTM) neural network, respectively. Finally, the prediction results of the sub-models of various components are integrated to obtain the final remaining useful life prediction result of the lithium battery. Experiment results show that the proposed method possesses high prediction accuracy and stability.

Keywords: remaining useful life prediction of lithium battery; variational mode decomposition; long short-term memory neural network; multilayer perceptron; integrated deep model

0 引 言

锂电池因其电压稳定、能量高、价格便宜等优点,目

前被广泛应用于电动汽车、电动船舶、航空航天等领域^[1]。随着锂电池使用过程中充放电循环次数增加,电

池内可使用锂离子活性降低,电池容量与功率衰退,剩余

格便宜等优点,目 使用寿命逐步缩短,从而对整套用电设备的安全运行产

收稿日期:2021-01-06 Received Date: 2021-01-06

^{*}基金项目:国家自然科学基金(51505277)项目资助

生影响。因此,锂电池剩余使用寿命预测是实现设备预 测性维护的基础,对于保障设备运行的可靠性和安全性 具有重要意义。

现有的锂电池剩余寿命预测方法主要是数据驱动的 方法。该类方法无需了解精确的电池失效物理化学模 型,直接从锂电池的电压、电流、温度等数据中挖掘出锂 电池性能退化的规律并建立退化规律与剩余寿命之间的 关系,具有较强的适用性。传统的基于数据驱动的锂电 池剩余使用寿命预测常采用支持向量回归(support vector regression, SVR)^[2]、相关向量机(relevance vector machine, RVM)^[3-4]、逻辑回归(logistic regression, LR)、极 限学习机(extreme learning machine, ELM)^[5]等浅层机器 学习模型对电池的容量数据进行建模。刘月峰等[6]提出 一种融合多个核函数构建相关向量机预测模型的方法,通 过果蝇算法优化多个核函数优化组合的线性方程系数,提 高了预测模型的预测性能。陈雄姿等[7]提出了一种基于 贝叶斯最小二乘支持向量回归(LS-SVR)的锂电池剩余寿 命在线预测方法。姜媛媛等^[8]提出一种基于 ELM 的间接 预测方法,通过构建基于 ELM 的等压降放电时间与实际 容量的关系模型和等压降放电时间预测模型,实现锂电池 的寿命预测。陈琳等^[9]提出了一种基于小波包能量熵和 改进无迹粒子滤波的电池的寿命预测方法。

为了克服单一模型泛化能力差的问题,部分学者进 一步采用集成学习的思想对单一模型进行融合。Yu^[10] 将逻辑回归与高斯过程回归(gaussian process regression, GPR)进行集成用于锂电池的剩余寿命预测。Wei 等^[11] 提出支持向量回归与粒子滤波相结合的锂电池剩余寿命 预测方法。吴祎等^[12]将锂离子电池容量退化数据分解 为一系列相对平稳的分量,然后针对不同的分量构建不 同的 GPR 预测模型。刘新天等^[13]建立了基于多项式模 型、双指数模型和集成深度模型的交互式多模型,通过无 迹粒子滤波算法对锂电池进行寿命预测。然而,传统机 器学习方法由于特征提取能力有限,一定程度上限制了 其预测性能。同时,浅层机器学习模型难以解决锂电池 寿命预测时长期预测精度不高的问题。

近年来,深度学习^[14] 凭借其强大的自适应特征学习 能力,已在图像处理、语音识别等领域得到了成功应 用^[5]。鉴于深度学习模型在特征学习上的优势,一些学 者开始把深度学习模型引入到锂电池剩余寿命预测领 域。洪晟等^[15]使用小波神经网络对锂电池样本数据进 行学习,建立电池使用寿命和退化指标的映射关系,从而 得到锂电池寿命预测曲线。刘子英等^[16]提出一种基于 自适应权重的改进粒子群-Elman 神经网络,解决了传统 Elman 神经网络容易陷入局部极小化问题,提高了锂电 池寿命预测精度。Song 等^[17]提出基于循环神经网络 (recurrent neural network, RNN)的改进门循环控制单元 算法,克服了长期预测精度不高的缺点。Ma 等^[18]利用 长短期记忆神经网络(long short-term memory,LSTM)对 时间序列优秀的预测能力,结合 K 近邻算法对电池剩余 寿命进行准确预测。Zhao 等^[19]提出了一种基于深度置 信网络和相关向量机的预测方法,通过深度置信网络从 锂电池容量数据中提取特征,使用相关向量机对提取的 特征和剩余使用寿命建立预测模型实现锂电池剩余寿命 预测。史水胜等^[20]从锂电池充放电数据的变化趋势中 提取代表退化特征的融合健康因子,结合自适应遗传算 法优化了 Elman 预测模型,进行电池剩余寿命预测。

深度学习模型虽然能够自适应地从电池容量数据中 学习到高层次的退化特征,具有较强的适用性。但是上述 方法仍然存在一些问题:1)单一尺度特征难以反映锂电池 复杂的退化趋势,难以解决电池容量再生等带来的预测精 度低的问题。上述方法多采用单一尺度下的电池容量退 化数据作为输入,而锂电池在使用过程中,其容量有时会 出现轻微的回升,即容量再生现象。容量再生现象使锂电 池的容量退化数据出现明显的波动。此外,环境、使用工 况等因素带来的随机干扰也会造成电池容量数据的波 动^[21],最终使得电池容量数据呈现出明显的非线性与非平 稳性,为锂电池寿命预测带来难题;2)单一预测模型的泛 化性能较差,导致预测结果不稳定,鲁棒性较弱。实际应 用中电池类型、材料、运行条件的差异都会对模型的预测 效果产生影响,导致预测精度较低,稳定性较差。尽管现 有方法中也出现了一些集成深度模型,但是在子学习器的 选择上缺乏针对性,没有充分考虑输入数据的特点。

针对单一尺度输入使模型难以从复杂的非平稳信号 中学习到退化特征、单一预测模型泛化性能差、预测精度 低的缺点,本文提出了一种基于变分模态分解与集成深度 模型的锂电池剩余寿命预测方法,弥补了单一模型预测精 度低,泛化性能差的缺点。使用 NASA 锂电池实验数据对 该方法进行了分析与对比,验证了该方法的有效性与准 确性。

基于变分模态分解与集成深度模型的锂 电池剩余寿命预测方法

1.1 预测方法流程与步骤

由于锂电池容量数据易于采集且能有效反映电池的 性能退化趋势,因此常采用电池容量作为衡量电池健康 状态的指标。电池剩余使用寿命(remaining useful life, RUL)一般定义为:在规定工况下,电池容量衰减到规定 的失效阈值所进行的充放电循环次数或周期。IEEE标 准1188-1996 规定:锂电池当前容量到达额定容量的 80%时,认为该电池已经失效^[22]。因此,准确地预测电 池容量便可准确预测锂电的剩余使用寿命。 本文提出了一种基于变分模态分解与集成深度模型的锂电池剩余寿命预测方法,使用电池容量数据作为反映电池退化趋势的指标。首先,利用变分模态分解(variational mode decomposition,VMD)从原始数据中分离出不同尺度下反映电池容量随机波动的本征模态函数(intrinsic mode function, IMF),以及反映全局退化趋势的残余分量。然后,分别采用 LSTM 与 MLP 对各 IMF 分量和残余分量进行训练。最后,将 LSTM 与多层感知机(multilayer perceptron,MLP)的预测结果进行集成,实现锂电池寿命预测。整体方法流程如图 1 所示。

图 1 基于变分模态分解和集成深度模型的锂电池寿命 预测方法流程

Fig. 1 Flow of the remaining useful life prediction method for lithium batteries based on VMD and integrated deep model

从图1中可以看出,本文所提出的方法大致可以划 分为多尺度分解、子学习器训练、集成深度模型预测3个 阶段,具体包括如下步骤:

1)获取锂电池容量退化数据 C。以 1,…,t 时刻的 锂电池容量退化数据作为训练集,t + 1 时刻后的锂电 池容量退化数据作为预测数据集,其中 t 表示的是当前 时刻。

2) 变分模态分解。对锂电池容量的退化数据 C 进行 变分模态分解,得到多个模态包括细节分量和残余分量, 其中残余分量反映电池整体退化趋势,细节分量反映出 电池容量再生和随机波动的特性,即;

$$\{g_1(t), \cdots, g_N(t), r(t)\} = VMD(C)$$
(1)

3)构建多层感知机子学习器。反映电池整体退 化趋势的残余分量 r(t) 具有单调性和平稳性,因此 选用多层感知机模型对残余分量进行预测。将训练 数据和标签输入子学习器进行训练,得到下一时刻预 测结果,即:

$$R(t+1) = MLP(r(t))$$
⁽²⁾

4)构建长短期记忆神经网络子学习器。反映容量再 生和随机波动的分量呈现一定周期性,因此选用长短期 记忆神经网络模型进行预测。将训练集数据和标签输入 长短期记忆神经网络进行训练,训练好的模型输出下一 时刻预测结果,即:

 $I_{\kappa}(t+1) = LSTM(g_i(1)\cdots g_i(t))$ (3)

5) 基于并行式集成方法, 将各子学习器预测结果进行集成, 从而可得到集成后的预测结果 Ĉ_{i+1}, 即:

$$\hat{C}_{t+1} = \sum_{K=1}^{K} I_{K}(t+1) + R(t+1)$$
(4)

根据集成深度模型输出的电池容量预测结果即可判 定锂电池的剩余使用寿命。下面对该方法的几个主要步 骤及相关理论基础进行简要介绍。

1.2 基于 VMD 的信号多尺度分解

变分模态分解是一种自适应、准正交和完全非递归的信号处理模型,其中心思想是将信号分解过程转换为 对非约束性变分问题求最优解过程,常用于非平稳信号 的处理^[23]。锂电池的电池容量退化数据不仅包含整体 的退化趋势信息,还存在着电池容量再生等因素带来的 随机波动,因此有必要采用 VMD 对其进行多尺度分解, 以便在不同尺度下提取电池容量退化特征。

VMD 本质是构造和解决变分问题,对于一个信号 *f*(*t*),其对应的约束变分模型为:

$$\begin{split} &\min_{|u_k|,|w_k|} \left\{ \sum_{k=1}^{K} \partial_i \left[\left(\delta(t) + \frac{j}{\pi} \right) * u_k(t) \right] * e^{-jw_k t} \right\} \, \Big\|_2^2 \ (5) \\ &\text{s. t. } \sum_{k=1}^{K} u_k(t) = f(t) \end{split}$$

式中: $\{u_k\}$ 为分解出的 $k \land IMF$, 即 $\{u_k\} = \{u_1, u_2, \dots, u_k\}$; $\{w_k\}$ 为各 IMF 中心频率, 即 $\{w_k\} = \{w_1, w_2, \dots, w_k\}$; * 表示卷积; ∂_i 为函数时间导数; δ_i 为单位脉冲函数。

对式(2)引入拉格朗日乘数算子 λ 和惩罚因子 α 将 有约束性条件的变分问题变为非约束性条件的变分 问题。

$$\Gamma\left(\left\{u_{k}\right\},\left\{w_{k}\right\},\lambda\right) = \alpha\left\{\sum_{k=1}^{K}\partial_{t}\left[\left(\delta(t)+\frac{j}{\pi}\right)\ast u_{k}(t)\right]\ast e^{-jw_{k}t}\right\}\left\|_{2}^{2}+\left(f(t)-\sum_{k=1}^{K}u_{i}(t)\right)\right\|_{2}^{2}-\left\langle\lambda(t),f(t)-\sum_{k=1}^{K}u_{i}(t)\right\rangle$$
(7)

采用乘子交替算法不断更新 u_k^{n+1} , u_k^{n+1} 和 λ , 反复迭 代直到满足收敛条件^[24]。

变分模态分解算法流程如图 2 所示,将锂电池的容 量退化数据进行 VMD 分解,即可得到包含细节分量和残 余分量的容量数据多尺度表达。

1.3 基于 MLP 的预测模型

在对电池容量数据进行 VMD 多尺度分解之后,将残 余分量输入 MLP 模型进行预测。该过程主要分为 MLP 模型的训练阶段和预测阶段。

MLP 典型结构如图 3 所示,包括输入层、隐藏层和输出层。

首先,在 MLP 模型的训练阶段,在 MLP 前向传播过 程中初始化多个权重矩阵 w,以及偏差系数 b。假设某网 络中的第 m - 1 层中共有 k 个神经元,则第 m 层第 j 个神 经元输出 α_i 为:

$$\boldsymbol{\alpha}_{j} = g\Big(\sum_{i=1}^{k} w_{ij}^{m} \boldsymbol{\alpha}_{i}^{m-1} + \boldsymbol{b}_{j}^{m}\Big)$$
(8)

式中: w_j^m 为第m层第j个神经元的权重; b_j^m 为第m层第j个神经元的偏倚向量; $g(\cdot)$ 为非线性激活函数。

为了使预测结果充分接近于真实值, MLP 使用反向 传播算法来调整系数矩阵 w 和偏倚向量 b。对输出预测 值进行损失函数计算:

$$Loss = \frac{1}{2} \sum_{k=1}^{N} (y - \hat{y})^{2}$$
(9)

式中: γ 为真实标签; $\hat{\gamma}$ 为预测值。

基于最小化损失函数,采用梯度下降法反向更新可 以得到每一层的系数矩阵 w 和偏倚向量 b。 然后,在 MLP 模型的预测阶段,将待测电池容量数据 VMD 分解后得到的残余分量输入训练好的 MLP 预测模型,即可得到该分量下一时刻的预测结果。

1.4 基于长短期记忆神经网络的预测模型

锂电池容量退化数据经 VMD 多尺度分解后的其他 反映随机波动的分量采用基于 LSTM 的模型进行预测, 该过程同样分为模型的训练阶段与预测阶段。

LSTM 网络中引入了门函数来实现对长距离信息的 有效利用,可以有效地应对长期预测时梯度消失和梯度 爆炸的问题,其结构如图4所示。

Fig. 4 LSTM neural network structure

在当前时刻 *t*,网络模型的输入由当前时刻的输入 *xⁱ* 及前一时刻隐藏层的输出值 *cⁱ⁻¹* 两部分组成,当前时刻 隐藏层输出值 *y_i* 可表示为:

 $y' = \sigma(W_{xc}x' + W_{cc}c'^{-1} + b_c)$ (10) 式中: W_{xc} 为输入层到隐藏层权值; W_{cc} 为隐藏层至隐藏 层权值; b_c 为隐藏层的偏置; $\sigma(\cdot)$ 是 sigmoid 非线性激活 函数。

网络在训练过程中更新状态如下:

1)暂时记忆状态信息 \hat{c}_t :在更新记忆单元 c_t 之前,会 先产生暂时记忆单元 \hat{c}_t ,由当前时刻t的输入 x_t 以及前一 时刻t - 1的隐藏层状态值 h_{-1} 得出 \hat{c}_t :

$$\hat{c}_{t} = \tanh(W_{xc}x_{t} + W_{hc}h_{t-1} + b_{c})$$
(11)
2) 计算输入门值 i_{t} : 对于输入数据, i_{t} 会有限度地存

储关键信息至此单元: $i = \sigma(W, n + W, h + h)$

$$i_{t} = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + b_{i})$$
(12)
3)计算遗忘门值 f_i:

$$f_{t} = \sigma(W_{x_{f}}x_{t} + W_{h_{f}}h_{t-1} + b_{f})$$
(13)

4) 计算目則记忆里兀状念值 c_i :

 $c_{t} = f_{t} * c_{t-1} + i_{t} * \hat{c}_{t}$

式中:*表示卷积, c_{i-1} 是上一时刻单元值, \hat{c}_i 为临时记忆 状态信息。

LSTM 在反向传播过程中,和 MLP 一样基于最小化 损失函数,采用梯度下降法反向更新网络权重参数^[25]。 长短期记忆神经网络模型训练过程如图 5 所示。训练阶 段完成后,在预测阶段,将待测电池容量数据 VMD 分解 后的波动分量输入训练好的 LSTM 预测模型,即可实现 多尺度波动分量的预测。

图 5 LSTM 训练流程 Fig. 5 Flow chart of LSTM training

最终,完成上述 VMD 多尺度分解与各子学习器训练 与预测后,在集成深度模型预测中,将 MLP 子学习器与 LSTM 子学习器的预测结果进行并行式集成,便可得到待 测锂电池的电池容量预测结果。将预测值与设定的失效 阈值相减得到的循环周期便是该电池当前时刻的 RUL 预测结果。

2 实验验证

2.1 实验数据说明

本文使用的锂电池数据来自 NASA PCoE 研究中心 的爱达荷州国家实验室^[26]。在该实验中,将额定容量为 2 Ah 的 18650 电池分为 4 组开展实验,编号为: B5、B6、 B7、B18,环境温度 24℃。采用标准充电方式,预先设定 的最大截止电压为 4.2 V,以 1.5 A 电流恒流充电,电池 电压达到最大截止电压时,转为恒压充电,直至充电电流 下降到 20 mA 时,结束充电。以 2 A 放电电流进行恒流 放电至 2.7 V 的容量,作为每个循环周期的放电容量,锂 电池容量退化曲线如图 6 所示。从图 6 中可以看出,电 池容量数据不仅有明显的单调下降退化趋势,还有电池 容量再生等因素带来的随机波动。

119.0 This i buttery cupacity degradation of

2.2 电池容量数据 VMD 分解

首先,将获取的锂电池容量数据进行 VMD 分解。 B5 电池原始容量数据和 VMD 分解结果如图 7 所示。对 VMD 算法参数进行多次尝试寻优,设定 VMD 分解子序 列数 K 为 6,相关参数 alpha 设置为 20。与原始信号相 比,残差信号有效地捕捉了全局退化趋势,能够更加明显 地反映出锂电池性能退化趋势,减小随机波动的影响;而 模态分量 1—5(IMF1 至 IMF5)有效反映出电池容量局部 再生和电池退化过程中随机波动的特性。

2.3 集成深度模型预测

将 VMD 分解出的多尺度信号分量输入集成深度模型进行训练。以电池 B5 为例,共有 168 组数据,取前 110 组作为训练集,后 58 组作为测试集,利用已知的数据预测出下一时刻的容量数据。将 VMD 分解后的残差分量训练数据输入多层感知机模型进行训练,表 1 为 MLP 的网络参数设置。

表 1 MLP 参数设置 Table 1 MLP narameter setting

	Tuble 1 MILI parameter set	
网络	实验参数	参数值
	输入节点数	1
	MLP 第一层参数矩阵	32
	MLP 第二层参数矩阵	4
MLP	全连接层输出数	1
	激活函数	Relu
	学习因子	0.09
	初始学习率	0.001
	迭代次数	200

然后,将预测集的残差分量输入训练好的 MLP 模型,预测结果如图 8 所示,多层感知机在 58 次预测中都 保持较高精度。

同样地,分别对 VMD 分解得到的不同尺度的 5 个 IMF 分量,采用相互独立的 5 个长短期记忆神经网络模 型进行训练。原则上增加 LSTM 网络的深度可以提高 预测精度,但由于本实验数据中训练样本个数有限,网 络深度过深会发生过拟合现象,因此这里选取 LSTM 的 隐藏层数为 2。详细的 LSTM 模型参数设置如表 2 所示。

表 2 LSTM 网络参数设置 Table 2 LSTM network parameter setting

网络	实验参数	参数值
	输入节点数	3
	LSTM 第一层输出节点数	50
	LSTM 第二层输出节点数	100
LSTM	全连接层输出数	1
	学习因子	0.2
	初始学习率	0.005
	迭代次数	200
	批量大小	50

训练完成后,将 B5 电池测试集各 IMF 数据输入训 练好的 LSTM 网络,预测结果如图 9 所示。从图 9 中可 以看出,LSTM 网络可以较好的预测出信号的波动趋势, 与真实分量高度贴合。可见,训练得到的 LSTM 模型具 有较强的时间序列非线性映射能力,在长期时间预测情 况下依然可以保持良好的预测性能。

最后,将多层感知机对全局退化趋势的预测结果 的和长短期记忆神经网络模型对波动成分的预测结 果进行集成,得到锂电池剩余寿命预测结果。如图10 所示,集成深度模型的输出的电池容量预测值与实测 的电池容量数据呈现高度一致,可以准确预测出电池 容量的退化趋势,并对电池容量再生等产生随机波动 也有很好的适应能力。由于电池容量是反映锂电池 RUL 的重要指标,电池当前容量与初始额定容量的比率即可反映电池的健康状态,所以图 10 的预测结果表明本文所提方法能够对锂电池的使用寿命进行准确预测。

Fig. 10 Prediction result of the integrated deep model for B5 battery

2.4 评价指标

为了定量评价方法的预测性能,采用平均绝对百分 误差(mean absolute percentage error, MAPE)、均方根误差 (root mean square error, RMSE)、平均绝对误差(mean absolute error, MAE)3个常用指标来衡量方法的预测 精度。

3个指标的计算公式如下:

$$MAPE = \frac{1}{N} \sum_{i=1}^{N} \frac{|C'(i) - C(i)|}{C(i)} \times 100\%$$
(17)

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} |C'(i) - C(i)|^2}$$
(18)

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |C(i) - C'(i)|$$
(19)

其中: C'(i) 为电池容量预测值;C(i) 代表电池容量 实际值;N 为预测循环次数。

2.5 模型运行时间

实际工程应用中,准确高效地预测出锂电池的剩余 使用寿命对于保证设备安全运行至关重要。本次实验所 使用 PC 端的 CPU 为 i5-8250U,内存为 8 GB,运行环境 为 keras2. 3. 1,TensorFlow 版本为 1. 15. 0。为了避免偶然 误差,每次结果均做 20 次重复试验取平均值。各个阶段 的运行时间如表 3 所示。可见,在本实验配置较低的硬 件平台上,本方法仍然可以在较短的时间内完成训练和 预测过程,具有较高的计算效率。

	表 :	3	各个步	骤的	运	行时间	
Table	3	Ru	Inning	time	of	various	stens

模型	时间/s
VMD 分解时间	5. 31
MLP 训练时间(1次循环)	1.67
MLP 预测时间	0. 33
LSTM 训练时间(1次循环)	5.63
LSTM 预测时间	1.28
集成深度模型 RUL 预测的总时间	1.61

2.6 结果对比

为了进一步验证方法的优越性,将本文方法与常用 的单一预测模型 SVR、ELM、GPR 和 LSTM, VMD 和不同 的预测模型组合(VMD-LSTM-MLP、VMD-LSTM、VMD-MLP),以及史永胜等^[20]提出的多尺度数据 PCA-AGA-ELMAN 预测方法进行对比。以 B5 电池为例,各个对比 模型与本文所提方法(VMD-LSTM-MLP)的预测结果如 表4所示。

表 4 各个对比模型预测结果

Table 4	Prediction	results	01	various	comparison models	

方法	MAPE	RMS	MAE
SVR	9.414 57	0.016 05	0.125 59
ELM	10.937 24	0.022 50	0.146 41
GPR	2.446 07	0.012 97	0.032 65
LSTM	0.95576	0.021 05	0.012 80
VMD-MLP	0.761 15	0.005 71	0.005 97
VMD-LSTM	0. 599 87	0.004 34	0.005 13
文献[20]所提方法		0.005	0.003 91
本文方法	0. 136 97	0.001 46	0.003 01

通过评价指标可以看出,单一预测模型的预测误差 较大。在4种单一预测模型对比中,LSTM的预测精度最 高。经过 VMD 多尺度分解之后再分别利用 MLP 和 LSTM 进行预测,即 VMD-MLP 和 VMD-LSTM 方法的预测 精度得到了大幅提升。VMD-LSTM 方法的 MAPE 比分解 之前降低了 37%,RMS 比分解之前降低了 78%,MAE 比 分解之前降低了 60%。说明利用 VMD 对信号进行多尺 度分解能够有效减小容量退化数据非平稳性对预测带来 的影响。本文提出的 VMD-MLP-LSTM 多尺度集成深度 模型得到的预测误差最低,预测精度最高。MAPE 分别 比单独使用 MLP 和 LSTM 模型进行预测的方法降低了 82% 和 77%,RMS 别比单独使用 MLP 和 LSTM 模型进行 预测的方法降低了 74%和 66%,MAE 别比单独使用 MLP 和 LSTM 模型进行预测的方法降低了 35%和 24%。说明 该集成深度模型方法能够针对各分量数据的特点采用符 合分量特征的子学习器进一步改善方法的适应性,提高 了锂电池剩余寿命预测的准确性和稳定性。

最后,为了进一步验证该方法的泛化性能,对 B6、B7 和 B18 电池进行多组对比试验,对比结果如图 11 所示。 可以看出本文所提出的方法对不同电池的各项预测误差 均为最小,说明该方法不仅具有较高的预测精度,还具备 较强的泛化能力,对不同电池的预测结果较为稳定。

3 结 论

本文提出了一种基于变分模态分解和集成深度模型 的锂电池剩余寿命预测方法。变分模态分解可以将锂电 池容量数据分解为不同尺度特征的分量,有效降低了锂 电池使用过程中容量再生现象与干扰因素引起的数据不 平稳现象对预测精度的影响。根据多尺度下各分量数据 的特点分别采用多层感知机和长短时神经网络对全局退 化趋势和各波动分量进行建模,并将各子模型的预测结 果进行集成,解决了单一预测模型精度低、泛化能力差的 问题。通过 NASA 锂电池数据进行实验验证,结果表明, 本文提出的方法可以实现锂电池剩余寿命的准确预测, 与单一尺度、单一模型以及其他形式的集成模型相比,具 有较高的预测精确和较强的稳定性。

参考文献

 [1] 刘大同,周建宝,郭力萌,等. 锂离子电池健康评估 和寿命预测综述 [J]. 仪器仪表学报, 2015, 36(1):
 1-16.

> LIU D T, ZHOU J B, GUO L M, et al. Survey on lithium-ion battery health assessment and cycle life estimation [J]. Chinese Journal of Scientific Instrument, 2015, 36(1): 1-16.

- [2] LIU W, YAN L, ZHANG X, et al. A denoising SVR-MLP method for remaining useful life prediction of lithium-ion battery [C]. IEEE Energy Conversion Congress and Exposition, 2019.
- [3] 王春雷,赵琦,秦孝丽,等.基于改进相关向量机的 锂电池寿命预测方法 [J].北京航空航天大学学报, 2018,44(9):1998-2003.

WANG CH L, ZHAO Q, QIN X L, et al. Lithium battery life prediction method based on improved correlation vector machine [J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1998-2003.

- [4] WANG X, JIANG B, LU N. Adaptive relevant vector machine based RUL prediction under uncertain conditions [J]. ISA Transactions, 2018, 82:217-224.
- [5] 丁阳征,贾建芳.改进 PSO 优化 ELM 预测锂离子电 池剩余寿命 [J].电子测量与仪器学报, 2019, 33(2):72-79.
 DING Y ZH, JIA J F. Prediction of residual life of lithium ion battery by improved PSO and optimized

ELM [J]. Journal of Electronic Measurement and Instrumentation, 2019, 33(2): 72-79.

[6] 刘月峰,赵光权,彭喜元.多核相关向量机优化模型的锂电池剩余寿命预测方法 [J].电子学报,2019,47(6):1285-1292.

LIU Y F, ZHAO G Q, PENG X Y. Prediction method of lithium battery remaining life based on multi-core correlation vector machine optimization model [J]. Chinese Journal of Electronics, 2019, 47 (6): 1285-1292.

- [7] 陈雄姿,于劲松,唐获音,等.基于贝叶斯LS-SVR的 锂电池剩余寿命概率性预 [J]. 航空学报, 2013, 34(9):2219-2229.
 CHEN X Z, YU J S, TANG H Y, et al. Probabilistic prediction of remaining life of lithium battery based on Bayesian LS-SVR [J]. Journal of Aeronautics, 2013, 34(9):2219-2229.
- [8] 姜媛媛,刘柱,罗慧,等. 锂电池剩余寿命的 ELM 间 接预测方法 [J]. 电子测量与仪器学报, 2016, 30(2):179-185.
 JIANG Y Y, LIU ZH, LUO H, et al. ELM indirect prediction method for the remaining life of lithium batteries [J]. Journal of Electronic Measurement and
- Instrument, 2016, 30 (2): 179-185.
 [9] 陈琳,陈静,王惠民,等.基于小波包能量熵的电池 剩余寿命预测 [J].电工技术学报, 2020, 35(8): 229-237.
 CHEN L, CHEN J, WANG H M, et al. Prediction of remaining battery life based on wavelet packet energy entropy [J]. Journal of Electrotechnical Technology, 2020, 35 (8): 229-237.
- [10] YU J. State of health prediction of lithium-ion batteries: Multiscale logic regression and Gaussian process regression ensemble [J]. Reliability Engineering & System Safety, 2018, 174:82-95.
- [11] WEI J, DONG G, CHEN Z. Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression [J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5634-5643.
- [12] 吴祎, 王友仁. 基于变分模态分解和高斯过程回归的 锂离子电池剩余寿命预测方法 [J]. 计算机与现代 化, 2020, 294(2): 81-86.
 WU Y, WANG Y R. The remaining life prediction method of lithium-ion battery based on variational modal decomposition and Gaussian process regression [J]. Computer and Modernization, 2020, 294 (2): 81-86.
- [13] 刘新天,张恒,何耀,等. 基于 IMM-UPF 的锂电池寿命估计 [J]. 湖南大学学报,2020,47(2):102-109.
 LIU X T, ZHANG H, HE Y, et al. Lithium battery life estimation based on IMM-UPF [J]. Journal of Hunan University, 2020, 47 (2): 102-109.
- [14] LECUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521(7553): 436-444.
- [15] 洪晟, 尉麒栋. 基于 WNN 的锂电池循环寿命预测[J]. 计算机测量与控制, 2013, 21 (8): 2146-2148.
 HONG SH, WEI Q D. WNN-based lithium battery cycle

life prediction [J]. Computer Measurement and Control, 2013, 21 (8): 2146-2148.

[16] 刘子英, 钱超, 朱琛磊. 基于 IPSO-Elman 的锂电池剩 余寿命预测 [J]. 现代电子技术, 2020, 43(12): 100-105.

LIU Z Y, QIAN CH, ZHU CH L. Prediction of remaining life of lithium battery based on PSO-Elman [J]. Modern Electronic Technology, 2020, 43 (12): 100-105.

- [17] SONG Y, LI L, PENG Y, et al. Lithium-Ion battery remaining useful life prediction based on GRU-RNN [C]. International Conference on Reliability, 2018.
- [18] MA G, ZHANG Y, CHENG C, et al. Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network [J]. Applied Energy, 2019, 253:1-11.
- [19] ZHAO G, ZHANG G, LIU Y, et al. Lithium-ion battery remaining useful life prediction with deep belief network and relevance vector machine [C]. IEEE International Conference on Prognostics and Health Management, 2017.
- [20] 史永胜,施梦琢,丁恩松. 基于多退化特征的锂离子 电池剩余寿命预测 [J]. 电源技术, 2020, 44(6): 836-840.
 SHI Y SH, SHI M ZH, DING EN S. Remaining useful life prediction of lithium ion battery based on multiple degradation characteristics [J]. Chinese Journal of Power Sources, 2020, 44(6): 836-840.
- [21] 王笑夭,杨志家,王英男,等.双卡尔曼滤波算法在 锂电池 SOC 估算中的应用 [J]. 仪器仪表学报, 2013,34(8):1732-1738.
 WANG X T, YANG ZH J, WANG Y N, et al. Application of dual extended Kalman filtering algorithm in the state-of-charge estimation of lithium-ion battery [J]. Chinese Journal of Scientific Instrument, 2013, 34(8): 1732-1738.
- [22] Sponsor. IEEE recommended practice for maintenance, testing, and replacement of valve-regulated lead-acid (VRLA) batteries for stationary applications[J]. IEEE, 2014:1-44.
- [23] LI H, LIU T, WU X, et al. An optimized VMD method and its applications in bearing fault diagnosis [J]. Measurement, 2020;108185.
- [24] 卿宗胜,高云鹏,吴聪,等.基于自适应 VMD 和改进 功率谱估计的球磨机负荷特征提取[J].仪器仪表学 报,2020,41(5):234-241.
 QING Z SH, GAO Y P, WU C, et al. Load feature

[25] 魏昱洲,许西宁.基于LSTM长短期记忆网络的超短期 风速预测[J].电子测量与仪器学报,2019,33(2): 64-71.

WEI Y ZH, XU X N. Ultra-short-term wind speed prediction based on LSTM long and short-term memory network [J]. Journal of Electronic Measurement and Instrument, 2019,33 (2): 64-71.

[26] SAHA B, GOEBEL K. Battery data set [R]. NASA Ames Prognostics Data Repository, 2007.

作者简介

王冉,2008年于西南交通大学获得学士 学位,2015年于上海交通大学获得博士学 位,现为上海海事大学讲师,主要研究方向 为机械故障诊断与寿命预测,阵列信号处 理、噪声源识别和深度学习。

E-mail:ranwang@shmtu.edu.cn

Wang Ran received bachelor degree from Southwest Jiaotong University in 2008, and received doctorate degrees both from Shanghai Jiao Tong University in 2015, respectively. She is currently a lecturer at Shanghai Maritime University. Her main research interest includes mechanical fault diagnosis and

后麒麟,2018年于上海第二工业大学获 得学士学位,2020年于上海海事大学获得硕 士学位,现为上海航空测控技术研究所工程 师,主要研究方向为机械设备故障诊断。 E-mail:houqilin96@163.com

Hou Qilin received bachelor degree from Shanghai Second Polytechnic University in 2018 and master degree from Shanghai Maritime University in 2020. He is currently an engineer at Shanghai Aviation Measurement and Control Technology Research Institute. His main research direction is fault diagnosis of mechanical equipment.

胡雄(通信作者),分别在 1984 年和 1997 年于上海交通大学获得学士学位和博 士学位,现为上海海事大学教授,主要研究 方向为大型港口机械的健康管理、故障诊断 与安全评估。

E-mail:huxiong@ shmtu.edu.cn

Hu Xiong (Corresponding author) received his B. Sc. and Ph. D. degrees both from Shanghai Jiao Tong University in 1984 and 1997, respectively. Now, he is a professor in Shanghai Maritime University. His main research interest includes large port machinery health management, fault diagnosis and safety evaluation.