0 引 言

数学形态学滤波是一种有效的非线性、非平稳滤波 方法,已广泛应用于图像和一维信号滤波、分割和特征提 取等领域^[1-2]。膨胀和腐蚀为数学形态学滤波的两种基 本运算,基于这两种运算,衍生出如开运算、闭运算、开闭 运算、闭开运算、交替混合运算等复杂的滤波技术,可更 加有效地处理一维信号^[3]。目前,已在地磁信号^[4]、电力 信号^[5-6]、振动信号^[7-8]和人体生理信号^[9]处理等方面得 到广泛应用。

人体生理系统具有非线性和非平稳的特性,因此,数 学形态学滤波法已广泛地用于脑电^[10]、心电^[11]、心 音^[12]、肌电^[13]、呼吸^[14]和脉搏^[15]等信号的处理。脉搏 信号易于采集,含有心血管系统丰富的生理和病理信息, 已在可穿戴设备中得到广泛应用。形态学滤波法已被用 于脉搏信号的处理,有学者将其用于脉搏信号基线漂 移^[16]、工频干扰、肌电干扰的抑制^[17],也有学者将其用于 脉搏信号分割及脉率提取^[15,18],取得较好的处理结果。 这些研究成果表明数学形态学滤波可有效地用于脉搏信 号处理。

自形态学滤波方法提出以来,就得到不断的改进 和扩展。有学者就最优结构元素类型、长度和高度的 选择进行研究^[19-21],还有学者对采用包络谱稀疏度、熵 等参数对信号的噪声污染程度进行评估,提出能够自 动调节结构元素长度的自适应形态学滤波法^[22],也有 学者对形态学滤波器进行扩展,提出多尺度形态学滤 波,使滤波性能不断提高^[23]。然而,这些方法主要以改 善滤波效果为主。而实际滤波过程中,随着结构元素 及微处理器系统缓存区长度的不断增加,数学形态学 滤波的运算量急剧增加,使其很难在信号实时处理中 得到应用。因此,提高数学形态学滤波法运算速度是 亟待解决的问题之一。

微处理器系统的信号处理过程中,缓存区每次更 新采样点,只有最高位和最低的采样点发生了变化,但 却要对其他未改变的采样点进行反复处理。若能够对 形态学滤波法进行改进,使其以迭代形式只处理发生 的变化采样点,便能提高滤波速度。因此,本文根据微 处理器系统采样点的更新特点,以及数学形态学滤波 原理,提出一种快速的数学形态学滤波法。采用实测 脉搏信号作为实验数据对所提出的方法进行验证。比 较不同结构元素类型、不同结构元素长度、不同缓存区 长度对改进前后形态学滤波法运行时间的影响,并通 过实测脉搏信号对改进后形态学滤波法的实用性进行 评估。

1 改进数学形态学滤波法原理

1.1 数学形态学滤波基本操作的改进

对于一维信号 f(n), 其定义域为 $D[f] = \{0, 1, 2, \dots, N-1\}$, N 为信号长度。结构元素为 g(m), $D[g] = \{0, 1, 2, \dots, M-1\}$, M 为结构元素长度, $N \ge M$ 。则膨胀和腐蚀运算的定义分别为^[3]:

$$(f \oplus g)(n) = \max_{m \in \mathcal{M}} \left[f(n-m) + g(m) \right]$$
(1)

$$(f\Theta g)(n) = \min \left[f(n+m) - g(m) \right]$$
(2)

式(1)中,函数 $f(\cdot)$ 的定义域为 $D(n) \cap D(n-m) =$ {M-1, 1, 2, …, N-1}。同样,式(2)中 $f(\cdot)$ 的定义域 为 $D(n) \cap D(n+m) =$ {0, 1, 2, …, N-M}。显然, 式(1)滤波结果的前M-1个采样点和式(2)滤波结果的 后M-1个采样点不确定。因此,根据膨胀和腐蚀运算的 原理,当 $0 \le n \le M-1$ 时,膨胀运算定义如下:

$$(f \oplus g)(n) = \max \left[f(n-m) + g(m) \right]$$
(3)

当*N*-1≥*n*>*N*-*M*时,腐蚀运算定义为:

 $(f\Theta g)(n) = \max_{m=0,\dots,N=-1} [f(n+m) - g(m)]$ (4)

式(1)表明,每次膨胀运算,需要采用从当前采样点 开始前 M 个采样点与结构元素进行运算,即膨胀运算具 有 M 个采样点的时延。而式(2)表明,对于每次腐蚀运 算,需要采用从当前采样点开始向后 M 个采样点与结构 元素进行运算,即腐蚀运算需要采用未来 M-1 个采样点 进行运算。显然,因为无法预知未来的采样点,腐蚀运算 很难用于信号的实时处理。因此,对式(2)所示的腐蚀 运算进行改进。

 $(f\Theta g)(n) = \max_{m \in \mathcal{M}} \left[f(n-m) - g(m) \right]$ (5)

依然采用当前采样点开始向前 *M* 个采样点计算腐 蚀运算。相比式(1)和(2),改进后的膨胀和腐蚀运算只 有 *M*-1 个采样点的时延,且不需要未来采样点。

对于一维信号,腐蚀运算可以消除信号中幅度向上的噪声而保留幅度向下的噪声,膨胀运算的作用相反。 然而,仅仅依靠膨胀和腐蚀运算,滤波效果有待提高。因此,基于式(1)和(5),可分别定义开、闭运算^[3]:

$$F_o = f \circ g = (f \Theta g) \oplus g \tag{6}$$

$$F_c = f \cdot g = (f \oplus g) \Theta g \tag{7}$$

进一步,定义混合滤波器(hybrid filter, HF):

$$F_{\rm HF} = (F_o + F_c)/2 = (f \circ g + f \cdot g)/2 \tag{8}$$

同样, 定义交替滤波器, 包括开闭(open-closing filter, OCF)和闭开滤波器(close-opening filter, COF)。

$$F_{\rm OCF} = f \circ g \cdot g \tag{9}$$

$$F_{\rm COF} = f \circ g \tag{10}$$

在混合滤波器和交替滤波器的基础上,定义交替混 合滤波器(alternate-hybrid filter, AHF): (11)

$$F_{\rm AHF} = (F_{\rm OCF} + F_{\rm COF})/2$$

1.2 基于滑窗迭代的数学形态学滤波法改进

1) 数学形态学滤波方法的改进思路

微处理器系统对一维信号进行模数转换后,将会缓存 一些数据用于处理。如图1所示,为缓存区采样点的更新 过程。假设缓存区可存储N个采样点,每采集一个新的采 样点,就需要进行数据更新。首先,剔除最早缓存(最左 端)的采样点f(0);然后,将f(1)~f(N-1)向左移动一位; 最后,将当前采样点放在f(N-1)位。如果数据流固定,则 缓存区就像一个窗口逐位在数据流中滑动,该过程称为滑 窗。每次滑窗,缓存区内只有f(0)和f(N-1)的数值改变, 其他采样点仅仅改变了位置而数值保持不变。

如果采用基于式(1)和(2)的形态学滤波方法,则每次 采样点更新后,需要重新对窗口内所有数据进行处理。同时,根据定义,与前 M-1 个和后 M-1 个采样点运算的结构 元素长度发生变化,滤波结果有偏差,只有第 M~N-M+1 位采样点的滤波结果正确。如果采用基于式(1)和(5) 的形态学滤波方法,每次采样点更新后,则仅有前M-1个 采样点的滤波结果有偏差。而当缓存区采样点长度大于 等于结构元素长度后,采用前M个采样点即可得到滤波 结果,而不需要采用未来的采样点。

虽然,采用基于式(1)和(5)的形态学滤波方法改善 了滤波过程,但是每次数据更新后,仍需要对缓存中N-M 个采样点进行重复运算,浪费微处理器计算资源。而这 种重复运算会随着缓存区和结构元素长度的增加而急剧 增加。因此,根据缓存区采样点的更新过程,对形态学滤 波法进行如下改进:

(1)将对整个缓存区的滤波转换为对缓存区后 M 个 采样点的滤波。根据式(1)和(5),改进后的膨胀和腐蚀 运算,只需要 M 个采样点即可得到滤波结果。因此,缓 存 M 个采样点就可满足滤波需求。特殊地,对于扁平型 及直线型结构元素,由于元素的幅值没有发生变化,可采 用滑窗迭代原理对膨胀和腐蚀运算中最值的计算过程进 行简化,进一步提高运算速度。

(2)根据不同类型形态学滤波器特点,缓存中间量的计算结果,减少重复计算,提高新采样点的处理速度。 如对于式(9)所示的交替滤波器,缓存前 *M* 个采样点的 开运算和闭运算结果,可加快当前采样点的滤波速度。

2) 数学形态学滤波方法的改进

根据缓存区采样点数量与结构元素长度的关系,改进后的数学形态学滤波法可分为两步:初始化和迭代,如图2所示。

图 2 改进形态学滤波法滤波过程

Fig.2 The filtering process of the improved mathematical morphology method

(1)初始化过程。如图 2(a)所示,当缓存区采样点的数量小于等于结构元素长度时(0≤n≤M-1),每个最新的采样点放在缓存区的第 n 个字节。然后,使用结构元素的前 n 个数据点与之运算。按照式(3)进行膨胀运算。对于腐蚀运算,计算如下:

$$(f\Theta g)(n) = \min_{m=0,\dots,n} [f(n-m) - g(m)]$$
(12)

膨胀运算结果存在 $d = [d(0), d(1), \dots, d(n)]$ 中,腐蚀运算的结果存在 $e = [e(0), e(1), \dots, e(n)]$ 中。进一步,根据式(6)、(7)可得到开、闭运算如下:

$$F_{o}(n) = \max_{m=0,\dots,n} \left[e(n-m) + g(m) \right]$$
(13)

$$F_{c}(n) = \min_{m=0,\dots,n} [d(n-m) - g(m)]$$
(14)

在此基础上,根据式(8)实现混合滤波器。根据式 (9)~(11)定义的滤波器,还需要继续存储开、闭运算的 结果,用于进一步运算。开运算结果存储在o=[o(0),o(1), ..., o(n)]中,闭运算结果存储在<math>c=[c(0),c(1), ..., c(n)]中。依照式(13)、(14),对开运算结果<math>o进行闭运算,得到开闭交替滤波器结果 F_{OCF} ,计算过程 需要缓存膨胀运算结果,存储在a=[a(0), a(1), ...,a(n)]。同样,对闭运算c进行开运算,得到闭开交替滤 $波器结果<math>F_{COF}$,计算过程需要缓存腐蚀运算结果,存储在 b=[b(0), b(1), ..., b(n)]。最终,根据式(11)可得到 交替-混合滤波器结果 F_{AHF} 。

(2)迭代过程。如图 2(b) 所示,当缓存区的采样点数量大于结构元素长度时(*n>M-1*),进入迭代过程。相比于初始化过程,采用滑窗迭代的方式更新缓存区和中间变量中的数据。数据缓存区和中间变量的长度为 *M*, 且保持不变。具体过程为:首先,剔除最低位的数据;然后,其他位的数据向左移动一位;最后,将当前的采样点 或运算结果存储在最高位。而膨胀、腐蚀、开、闭等运算 过程与初始化相同。

3)适用于直线型及偏平型结构元素的数学形态学滤 波法改进

根据式(1)和(5),每次膨胀和腐蚀运算,需要计算 当前采样点开始前 M 个采样点与结构元素的和/差,然 后,再计算结果的最值。直线型及扁平型元素的幅值不 变,则g(m)的值为常数,因此,每次膨胀和腐蚀运算过 程中,前 M-1 个采样点与结构元素的和/差保持不变。 为了加快运算,只需采用滑窗迭代的方式计算当前采样 点与结构元素幅值的和/差即可。同时,每次膨胀和腐蚀 计算过程中,需要计算所有 M 个采样点的最值,而每次 运算只有最高位和最低位的采样点发生了变化,这两个 采样点不一定是最值,因此,最值计算过程存在冗余,可 进一步简化。

图 3 所示为膨胀和腐蚀运算的简化计算过程。主要 包括两步:与结构元素运算、最值计算。

Fig.3 The simplified calculation processes of dilation and erosion operations

(1)与结构元素运算。图 3 中,α 和β分别用于存储 采样点与结构元素幅值的和与差。当前采样点存储在缓 存区的第 M 位,采用滑窗的形式更新缓存区采样点后, 将当前采样点与结构元素幅值的计算结果存储在第M-1 位。这样,每次运算,可以减少 M-1 次和/差运算。

(2)最值计算。设置两个变量,存储最值的位置及 幅值。如图3所示,Location中存储最值位置,由于第一 个采样点放在最高位,因此,初始值设置为M-1。变量 Min和Max分别存储最小值和最大值,初始化为-Inf及 Inf。每次运算,判断当前计算结果是否是新的最值,如果 是,记录新的最值幅值及位置;如果不是,最值对应位置 减1,表示最值向低位移动一位。同时,当最值从缓存区 或中间变量中剔除后,需要重新计算最值,这个过程通过 判断 Location 是否为0实现。如果是,则最值对应的采 样点即将剔除,需要重新计算最值;否则,继续按照上述 过程继续计算最值。

由图 3 可以看出,对于不同类型的输入数据,缓存的 α 和 β 会发生变化,若继续调用该函数,会导致缓存的最 值及其位置发生混乱。由于形态学滤波器反复地调用膨 胀和腐蚀计算,每次运算的输入数据不同。为了避免最 值计算和调用的混乱,需要单独开辟缓存,存储中间量的 最值及其位置。以交替混合滤波器为例,计算过程中共 用到膨胀和腐蚀运算各 4 次,因此,需要开辟 16 Byte 的 缓存区存储运算结果的最值及其位置。其中,4 Byte 存 储最大值,初值为 Inf;4 Byte 存储最小值,初值为-Inf; 8 Byte存储对应最大值和最小值的位置,初值为 M-1。

4) 平滑滤波器的改进

形态学滤波后的信号存在局部失真现象,一般可通 过平滑滤波进行消除。根据平滑滤波器的工作原理及缓 存区数据更新的过程,提出以下形式平滑滤波器。

$$F_{\rm avr}(n) = \begin{cases} \frac{Sum + d_{\rm new}}{n} & 0 \le n \le L - 1\\ \frac{Sum + d_{\rm new} - d_0}{L} & n > L \end{cases}$$
(15)

式中: *F*_{avr}(*n*) 为平滑滤波后的第*n*个采样点;*L*为平滑滤波的步长;*Sum* 是长度为*L*的采样点和,初值为0。根据数据长度与步长的关系,滤波过程可分为两步(参考图2)。当长度小于等于步长时,只需要将新采样点*d*_{new}与已缓存采样点和进行累加,当前数据长度为*n*。当*n*大于步长时,需要计算*L*个采样点的和,因此在累加新采样点值的同时,需要从和中减去最早的采样点值*d*₀,而数据的长度*L*不变。

2 实验数据

采用所开发的穿戴式生理信号采集系统采集实验数据,图4所示为系统实物图及信号采集过程。系统由上位机和下位机组成,其中下位机由模块1和模块2 组成,上位机为模块3。采用ZigBee模块连接上下位机,实现信号的无线采集与同步传输。模块1用于采 集心电和呼吸信号,模块2用于采集腕部和指端脉搏 信号,模块3同步接收下位机传输的各路信号,对其进 行存储及处理。

实验对象为 21~26 岁的健康在校大学生,其中,男 生 18 名,女生 13 名。实验前在常熟市第一人民医院进 行体检,确保实验对象的健康状态。在常熟第一人民医 院伦理委员会的监督之下,实验对象佩戴实验设备,处于 静坐状态,同步采集各路信号4 min,采样频率为1 000 Hz。

图 4 脉搏信号采集过程 Fig.4 The recording process of PPG signal

3 实验结果及讨论

采用均方根误差(mean square error, MSE)评价改进 方法的准确性,定义如下:

$$MSE = \sqrt{\frac{1}{N} \left[\sum_{n=0}^{N-1} (R(n) - S(n))^2 \right]}$$
(16)

式中:{R(n)}及{S(n)}为需要计算误差的两个信号。

采用笔记本作为算法验证的硬件平台,配置为: Intel ② Core[™] i7-6700HQ CPU,时钟频率为 2.6 GHz,内 存16 GB,64 bit Windows-7 操作系统。算法验证的软件 环境:64 bit MATLAB 2016a。采用软件自带的 tic 及 toc 函数统计程序的运行时间。

目前,形态学滤波法可用于离线和在线滤波。其中, 对于离线滤波,由于已获得全部信号,只需对信号进行一 次性处理即可。而对于在线滤波,现有做法为:每次获得 新采样点后,对缓存区的所有数据进行滤波,称其为改进 前在线滤波方法(改进前方法)。本文提出的方法称为 改进后在线滤波方法(改进后方法)。为了对比改进前 后在线滤波方法的性能,本文研究在 MATLAB 软件中设 置数组模拟实际数据缓存区,并模拟实际数据的在线更 新和处理过程。

信号的实际在线滤波过程中,结构元素的类型、结构 元素的长度、数据缓存区的大小是影响方法实时性的重 要因素,因此,本文研究分别对比了这些因素对改进前后 在线滤波方法的影响。

3.1 结构元素类型对方法实时性影响

本文比较了常用的扁平型、线型、三角型、正弦型和 半圆型^[21]结构元素对形态学滤波的影响。就方法的准 确性而言,离线滤波、改进前和改进后方法之间的 *MSE* 为0,这说明改进后方法保持滤波结果的准确性不变。 而结构元素类型对方法的实时性影响,结果如表1 所示。 各结构元素的幅度为10(扁平元素幅度=0),长度为 41 个采样点,缓存区长度为 512 个采样点,脉搏信号的

长度为4 min.31 组数据的实验统计结果以"均值±标准 差"的形式在表1中展示。

Table 1 The influence of different structural elements on the real-time performance of the methods							
结构元	素类型	扁平	线型	三角型	余弦型	半圆型	
	改进前	183. 61±0. 75	187. 16±1. 92	187. 47±2. 19	187.98±2.03	188.62±2.32	
混合	改进后	1.36±0.01	1.40±0.02	1.88±0.02	1.89±0.04	1.90±0.04	
	倍数	135.01	133. 68	99.72	99.46	99.27	
	改进前	184. 46±0. 49	188. 18±2. 16	186. 89±2. 03	187. 82±2. 21	188. 23±1. 63	
闭开	改进后	1.60 ± 0.08	1.61±0.046	2.26±0.05	2.25±0.04	2.27±0.07	
	倍数	115.29	116. 88	82. 69	83. 48	82.92	
	改进前	184. 59±0. 60	187. 89±2. 05	187. 18±1. 65	187.73±1.60	188. 01±1. 59	
开闭	改进后	1.57±0.01	1.60 ± 0.02	2.27±0.03	2.26±0.01	2.26±0.05	
	倍数	117. 612	117. 433	82. 443	82. 963	83.084	
	改进前	367.96±0.72	376.26±2.86	375.36±2.03	376.64±1.27	377.28±1.33	
交替混合	改进后	1.81±0.02	1.87±0.06	2.71±0.02	2.70±0.02	2.72±0.01	
	倍数	203. 29	201.21	138. 51	139. 49	138.71	

表1 不同结构元素对算法实时性影响

由表1可知,改进前方法扁平型元素的耗时较少,其 他方法耗时相当,改进后方法扁平型及线型元素的耗时 较少,其他耗时相当。因为扁平元素的幅值为0,相比于 定点或者浮点运算,其速度较快。但对于改进后的方法, 采用扁平型和线型结构元素的耗时明显比其他方法少。 根据图3原理,扁平型和线型结构元素的滤波过程采用 迭代的方式加快了运算速度。

总体而言,对于长度为4 min 的脉搏信号,改进前方 法不能满足信号实时处理的需求,而改进后方法的耗时 很少,可用于信号实时处理。改进前方法进行混合、闭 开、开闭滤波的耗时在183 s 以上, 这意味着采样周期中 约76.25%以上的时间需要用来滤波。而对于交替混合 滤波器,耗时更是在367 s以上,信号处理速度跟不上采 样速度。相比之下,改进后的方法耗时最高不超过 2.8 s,即最多仅占用采样周期中的1.17%的时间就可完 成滤波,为信号进一步处理节约了大量时间。

3.2 结构元素长度对方法实时性影响

形态学滤波过程中,需要将结构元素与信号进行反 复运算得到处理结果,因此,运算时间与结构元素的长度 呈正比。如表2所示,为线型结构元素(幅值为10)的长 度对形态学滤波运算时间的影响,模拟缓存区长度为 256个采样点,信号长度为4 min,滤波方式为交替混合 滤波。当结构元素长度从 31 个采样点增加到 241 个采 样点时,改进前方法耗时由 189.04±0.82 s 增加到 383.38±0.69 s,平均耗时增加了 197.34 s,增加了一倍 多。而改进后方法耗时仅由 2.60 ± 0.04 s 增加到 4.10±0.04 s,平均耗时增加了 1.50 s,仅增加了 0.577 倍。当结构元素长度为 211 个采样点时,改进前方法耗 时达到改后方法的96.14倍。对于长度为240 s的脉搏信 号,当结构元素长度大于91个采样点后,改进前方法不能 满足实时性要求。相比之下,改进后方法在结构元素长度 增加到 241 个采样点时,仍可用于信号的实时处理。

表 2 不同结构元素长度对算法实时性影响

Table 2	The influence of	of different l	ength of	structural	element o	on the	real-time	performance	of the	methods

M(采样点)	31	91	151	211	241
改进前/s	189.04±0.82	266.15±0.59	325.90±0.75	369.19±0.95	383.38±0.69
改进后/s	2.60±0.04	3.02±0.02	3.44±0.03	3.84±0.02	4.10±0.04
倍数	72.71	88.13	94. 74	96. 14	93. 51

3.3 数据缓存区大小对方法实时性影响

缓存区长度是影响形态学滤波速度的另一个重要因

素。缓存区越大则可以获得更多的信息,同时也增加了 每次信号处理运算量。对于长度为41个采样点,幅度为 10 的线型结构元素,改变缓存区长度,改进前后方法耗时如表3所示。

表 3 不同缓存区长度对算法实时性影响 Table 3 The influence of different buffer lengths on the real-time performance of the methods

N(采样点)	512	1 024	1 536	2 048
改进前/s	371.25±3.82	695.80±5.20	996.93±5.92	1 279.54±16.55
改进后/s	1.78±0.02	1.77±0.03	1.78±0.01	1.78±0.02
倍数	208.57	393.12	560.01	718.84

随着缓存区长度的不断增加,改进前方法耗时急剧 增加,而改进后方法不受缓存区长度增加的影响。当缓 存区长度增加到 2 048 个采样点时,改进前方法耗时是 改进后方法的 718.84 倍。因为改进后方法只需要对当 前采样点向前 M 个采样点进行处理,并通过迭代的方式 更新滤波结果,因此,缓存区的增加并没有引起其耗时的 增加。而改进前的方法,在每次更新数据后,都会对缓存 区内 N-M 个采样点进行重复处理,因此,随着 N 的增加, 冗余计算增加,浪费系统资源。显然,对于长度为 240 s 的脉搏信号,改进后方法可用于信号实时处理。

4 方法的应用

4.1 脉搏信号的去噪

对于图 5 所示的实测脉搏信号,该信号受到严重的噪声和干扰污染。采用文献[17]中的数学形态学滤波方式, 首先,采用交替混合滤波器抑制脉搏信号中的工频干扰、 肌电干扰和白噪声。结构元素采用长度为 30 个采样点的 扁平型元素,并使用 30 个采样点的平滑滤波器对滤波后 的信号进行整形;然后,保持结构元素类型不变,将长度增 加到 800 个采样点,对信号进行处理,并采用 600 点的平滑 滤波器进行整形,得到脉搏信号的基线漂移;最后,将基线 漂移从第一次滤波结果中减去得到最终的滤波结果。通 过对比可知,信号中的噪声和干扰得到了有效抑制。

Fig.5 The data filtering result of measured PPG signal

分别采用离线,改进前方法(1024 Byte),改进后方 法3种方式对实测脉搏信号进行滤波,3种方法滤波结 果之间的 MSE=0,即滤波结果相同。对于31组脉搏信 号,耗时分别为22.84±1.65,19371.31±364.96及 44.23±2.16s。可以看出,如果采用改进前方法滤波,耗 时竟然超过5h。因为当将结构元素增加到800个采样 点后,则缓存区必须大于800个采样点,造成采样点更新 后产生大量的重复运算。而所改进的方法仅耗时40多 秒,相比于一次性的离线滤波,耗时仅增加了20多秒,而 且保持准确性不变。

将改进后的方法与常用的脉搏信号滤波方法(整系 数滤波法和经验模态分解滤波法)进行对比,其中,采用 文献[18]的整系数陷波滤波器(陷波点0、50 Hz 及整数 倍,增益Q=64,)滤除脉搏信号中基线漂移和工频干扰、 整系数低通滤波器(低通截止频率66.67 Hz、16 阶)滤除 肌电干扰;采用文献[24]经验模态分解滤波法提取脉搏 信号的主要成分(主要频率0.5~10 Hz)。对于图5所示 的原始脉搏信号,1024个采样点的滤波结果如图6所 示。通过对比可以看出,经验模态分解滤波法和所改进 的形态学滤波法结果相近,而整系数滤波法和所改进 的形态学滤波法结果相近,而整系数滤波法和所改进 的抑制效果欠佳。对于31组数据,整系数滤波法耗时为 65.34±3.56 s,经验模态分解滤波法耗时为 8478.25± 153.56 s。对于4 min 的脉搏信号,整系数滤波法和所提 出方法能满足实时性要求,而经验模态分解法耗时超过 了 2.3 h,显然不能用于脉搏信号实时处理。

图 6 不同滤波法的滤波结果 Fig.6 The results of different filtering methods

4.2 脉搏信号的分割及特征提取

形态学滤波在抑制脉搏信号中噪声或干扰的同时, 也可用于信号的分割和特征提取。可将交替混合滤波器 与开运算滤波器结合,实现信号分割^[18]。首先,采用交 替混合滤波器抑制信号中的工频干扰、肌电干扰和白噪 声,滤波过程中选用长度为 30 个采样点的扁平型元素, 滤波后采用 30 个采样点的平滑滤波进行优化。对于实 验数据中的任意一组脉搏信号,如图 7(a)所示,交替混 合滤波结果如图中的蓝色实线所示,可以看出信号中的 噪声和干扰得到有效抑制。然后,增加结构元素长度至 200个采样点,与滤波后的信号进行开运算滤波,得到 图 7中的红色虚线所示结果。最后,采用交替混合滤波 结果减去开运算滤波结果,得到图 7(b)所示的曲线。可 以看出,两次滤波后,脉搏信号的主波和潮波被分割出 来。进一步,只需要计算其极值即可得到脉搏信号主波 和潮波的位置,进而计算脉率等参数。

Fig.7 The segmentation result of measured PPG signal

通过对 31 组脉搏信号进行处理,得到离线、改进前 方法(512 Byte)、改进后方法分割信号的平均耗时分别 为 5. 22±0. 59,4896. 52±112. 64 和 26. 32±1. 80 s,而 3 种 方法分割结果的 MSE 相同。可以看出,若采用改进前方 法对脉搏信号进行滤波,4 min 的信号竟然需要耗时 1. 3 h以上,显然不能满足实时性要求。而改进后方法仅 耗时 26 s 多,比一次性离线滤波仅多 20 多秒。因此,所 提出的方法可用于脉搏信号的实时处理。

5 结 论

根据一维信号数学形态学滤波原理及微处理器缓存 区采样点的更新过程,提出一种快速的数学形态学滤波 方法。通过实测脉搏信号对所提出的方法进行验证。对 于 31 组长度为 240 s 的脉搏信号,探索了结构元素类型、 长度及缓存区长度对滤波速度的影响。结果表明:对于 不同结构元素,改进前方法耗时在 180 s 以上,而改进后 方法耗时不超过 3 s;随着结构元素长度的不断增加,改 进前后的方法耗时都在增加,但是改进前方法最高耗时 达 380 s 以上,而改进后方法仅需要 4 s 左右;随着缓存 区长度的增加,改进前方法耗时不断增加,最高达 1 279 s 以上,而改进后方法不受影响,耗时仅为 1.78 s 左右。相 比于常用的整系数滤波法和经验模态分解法,改进后的 方法具有较好的滤波效果和较低的耗时。因此,改进后 的方法极大地提高了运算速度,可用于脉搏信号的实时 处理。在未来的研究中,将通过实际微处理器系统实现 所改进的形态学滤波方法,探索其在脉搏等其他一维信 号实时处理中的应用。

参考文献

 [1] 周开军,周鲜成,申立智,等.基于多变量属性分类的图像形态滤波方法研究[J].仪器仪表学报,2015, 36(8):1735-1743.

ZHOU K J, ZHOU X CH, SHENG L ZH, et al. Image morphological filtering method based on multivariate attributes classification [J]. Chinese Journal of Scientific Instrument, 2015, 36(8): 1735-1743.

 [2] 张小龙,张氢,秦仙蓉,等.基于 ITD-形态滤波和 Teager 能量谱的轴承故障诊断[J].仪器仪表学报, 2016,37(4):788-795.

> ZHANG X L, ZHANG Q, QIN X R, et al. Fault diagnosis method for rolling bearing based on ITDmorphological filter and Teager energy spectrum [J]. Chinese Journal of Scientific Instrument, 2016, 37(4): 788-795.

- [3] JANG D G, FAROOQ U, PQRK S H, et al. A robust method for pulse peak determination in a digital volume pulse waveform with a wandering baseline [J]. IEEE Transactions on Biomedical Circuits and Systems, 2014, 8(5): 729-737.
- [4] HUANG W, WANG R, CHEN Y. Regularized nonstationary morphological reconstruction algorithm for weak signal detection in microseismic monitoring: methodology[J]. Geophysical Journal International, 2018, 213(2): 1189-1211.
- [5] NAMDARI F, SALEHI M. High-speed protection scheme based on initial current traveling wave for transmission lines employing mathematical morphology [J]. IEEE Transactions on Power Delivery, 2016, 32(1): 246-253.
- [6] 谢国民,刘宽. 基于形态学滤波和 OTSU 的串联故障 电弧识别方法[J]. 电子测量与仪器学报, 2019,

33(5): 46-56.

XIE G M, LIU K. Series fault arc recognition method based on morphological filtering and OTSU [J]. Journal of Electronic Measurement and Instrumentation, 2019, 33(5): 46-56.

 [7] 崔锡龙,王红军,邢济收,等.广义形态滤波和 VMD 分解的滚动轴承故障诊断 [J].电子测量与仪器学报, 2018,32(4):51-57.

> CUI X L, WANG H J, XING J SH, et al. Rolling bearing fault diagnosis of generalized morphological filtering and VMD decomposition [J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(4): 51-57.

- [8] LI Y, LIANG X, ZUO M J. Diagonal slice spectrum assisted optimal scale morphological filter for rolling element bearing fault diagnosis [J]. Mechanical Systems and Signal Processing, 2017, 85: 146-161
- [9] ZHANG F, LIAN Y. QRS detection based on multiscale mathematical morphology for wearable ECG devices in body area networks[J]. IEEE Transactions on Biomedical Circuits and Systems, 2009, 3(4): 220-228.
- [10] EL-SAMIE F E A, ALOTAIBY T N, KHALID M I, et al. A review of EEG and MEG epileptic spike detection algorithms[J]. IEEE Access, 2018, 6: 60673-60688.
- [11] YAZDANI S, VESIN J M. Extraction of QRS fiducial points from the ECG using adaptive mathematical morphology [J]. Digital Signal Processing, 2016, 56: 100-109.
- [12] LIU Q, WU X, MA X. An automatic segmentation method for heart sounds [J]. Biomedical Engineering Online, 2018, 17(1): 106.
- BHATEJA V, SRIVASTAVA A, TIWARI D K, et al. Baseline correction in EMG signals using mathematical morphology and manonical morrelation analysis [C]. Intelligent Engineering Informatics, Singapore: Springer, 2018: 581-589.
- [14] LIU M, XUE H J, LIANG F, et al. UWB-radar-sensed human respiratory signal modeling Based on the morphological method [J]. Progress in Electromagnetics Research, 2018, 88: 235-249.
- [15] JANG D G, PARK S H, HAHN M. Enhancing the pulse contour analysis-based arterial stiffness estimation using a novel photoplethysmographic parameter[J]. IEEE Journal of Biomedical and Health Informatics, 2014, 19(1):

256-262.

- [16] DUAN K, HU Y, QIAN Z, et al. An FPGA-based morphological filter for baseline wandering correction in photoplethysmography [C]. 2016 IEEE Biomedical Circuits and Systems Conference, 2016: 216-219.
- [17] 祝宇虹,张富强,李满天,等.一种基于数学形态学的脉搏波信号预处理方法研究[J].北京生物医学工程,2009,28(2):122-125.
 ZHUYH, ZHANGFQ,LIMT, et al. A new signal pre-processing method of pulse wave based on mathematical morphology theory[J]. Beijing Biomedical Engineering, 2009, 28(2): 122-125.
- [18] 丑永新. 动态脉搏信号检测与脉率变异性实时分析方法研究[D]. 兰州: 兰州理工大学,2015.
 CHOU Y X. The research on dynamic pulse signal detection and real-time pulse rate variability extraction and analysis [D]. Lanzhou: Lanzhou University of Technology, 2015.
- [19] 刘思远,杨梦雪,王闯,等.正弦变载荷工况下液压 泵振动信号的形态学滤波方法[J].中国机械工程, 2016,27(19):2557-2563.
 LIUSY,YANGMX,WANGCH, et al. Morphological filtering method for vibration signals of hydraulic pump under sinusoidal variable load conditions [J]. China Mechanical Engineering, 2016, 27(19):2557-2563.
- [20] 姜万录,郑直,朱勇,等. 基于最优扁平型结构元素 长度的液压泵故障诊断研究[J]. 振动与冲击, 2014, 33(15): 35-41.
 JIANG W L, ZHENG ZH, ZHU Y, et al. Hydraulic pump fault diagnosis based on optimal flat structure element length [J]. Journal of Vibration and Shock, 2014, 33(15): 35-41.
- [21] 陈平,李庆民. 基于数学形态学的数字滤波器设计与 分析[J]. 中国电机工程学报, 2005, 25(11): 60-65.
 CHEN P, LI Q M. Design and analysis of mathematical morphology-based digital filters [J]. Proceedings of the CSEE, 2005, 25(11): 60-65.
- [22] 邓飞跃,杨绍普,郭文武,等.基于自适应多尺度形态学 AVG-Hat 滤波的滚动轴承故障特征提取方法[J].振动工程学报,2017,30(6):1056-1065.
 DENG F Y, YANG SH P, GUO W W, et al. Fault feature extraction method for rolling bearing based on adaptive multi-scale morphological AVG-Hat filtering[J]. Journal of Vibration Engineering, 2017, 30(6):

1056-1065.

- [23] LI Y, ZUO M J, LIN J, et al. Fault detection method for railway wheel flat using an adaptive multiscale morphological filter [J]. Mechanical Systems and Signal Processing, 2017, 84: 642-658.
- [24] POLLREISZ D, TAHERINEJAD N. Detection and removal of motion artifacts in PPG signals [J]. Mobile Networks and Applications, 2019: 1-11.

作者简介

丑永新,2010 年和 2015 年于兰州理工 大学分别获得学士学位和博士学位,现为常 熟理工学院讲师,主要研究方向为生物医学 信息检测与识别。

Email: cslgchouyx@cslg.edu.cn

Chou Yongxin received his B. Sc. and Ph. D. degrees both from Lanzhou University of Technology in 2010 and 2015, respectively. He is currently a lecturer at Changshu Institute of Technology. His main research interests include biomedical information detection and recognition.

张爱华(通信作者),1991年于兰州理 工大学获得硕士学位,2005年于西安交通大 学获得博士学位,现为兰州理工大学教授, 主要研究方向为生物医学信号检测与处理。 Email: zhangaihua@lut.cn

Zhang Aihua (Corresponding author) received her M. Sc. degree from Lanzhou University of Technology in 1991, and received her Ph. D. degree from Xi' an Jiaotong University in 2005. She is currently a professor at Lanzhou University of Technology. Her main research interests include biomedical signal detection and processing.

冯玉峰,1996年于南京医科大学获得学 士学位,现为常熟市第一人民医院主任医 师,主要研究方向为心血管疾病临床诊断与 急救。

E-mail: 13706238317@163.com

Feng Yufeng received his M. Sc. degree from Nanjing Medical University in 1996. He is currently a Chief Physician at Changshu No. 1 People's Hospital. His main research interests include cardiovascular disease clinical diagnosis and rescue.