基于游标效应的高灵敏度光纤 Fabry-Perot 热式流速传感技术研究
DOI:
CSTR:
作者:
作者单位:

1.东北大学秦皇岛分校控制工程学院秦皇岛066004; 2.河北省微纳精密光学传感与检测技术重点实验室 秦皇岛066004; 3.东北大学信息科学与工程学院沈阳110819

作者简介:

通讯作者:

中图分类号:

TH815

基金项目:

国家自然科学基金(62375045)、中央高校基本科研业务费国家项目培育基金(N2423022)、河北省自然科学基金(F2023501004)项目资助


Research on high-sensitivity fiber-optical Fabry-Perot thermal flow velocity sensing technology based on the vernier effect
Author:
Affiliation:

1.School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China; 2.Hebei Key Laboratory of MicroNano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China; 3.College of Information Science and Engineering, Northeastern University, Shenyang 110819, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统光纤热式流速传感器在高流速区域灵敏度低、流速测量上限低的问题,一种基于游标效应和热敏材料的高灵敏度光纤热式流速传感方法被提出,该方法所采用的光纤传感器由SMF与末端填充热敏材料的HCF熔接而成,传感器利用热敏材料的高温度敏感特性实现了对传感器灵敏度的第1级增敏,同时,SMF和热敏材料端面构建的级联FPI结构形成了游标效应,利用游标效应的增敏特性实现了对传感器灵敏度的第2级增敏,通过灵敏度的两级增敏机制,传感器在高流速区域的流速传感灵敏度被提高,同时,传感器的流速测量上限也被提升。采用PDMS为热敏材料,对所提出的高灵敏度光纤热式流速传感方法的传感性能进行了理论分析,同时对传感器制备工艺进行了研究,制备了传感器实物,并对传感器的灵敏度、最大流速测量值、重复性等传感性能进行了试验分析。试验结果表明,传感器具备1.399 nm/℃的温度灵敏度特性,传感器的最大流速测量值达到25 m/s,范围为17~25 m/s,传感器响应曲线具有良好的线性度(R2=0.99),流速传感灵敏度达到1.45 nm/(m·s-1),灵敏度的重复性偏差仅为1.24%,具有良好的一致性。基于高灵敏度和高流速测量上限的优势,以及体积微型化的特点,该流速传感方法在工业应用领域具有良好的应用潜力。

    Abstract:

    To address the issues of low sensitivity in high-velocity regions and limited upper measurement range in traditional fiber-optic thermal flow sensors, a high-sensitivity fiber-optic Fabry-Perot thermal flow velocity sensing method based on the Vernier effect and thermosensitive materials is proposed. The fiber-optic sensor employed in this method is fabricated by splicing a single-mode fiber (SMF) with a hollow-core fiber (HCF) filled with thermosensitive material at its end. The sensor achieves the first-stage sensitivity enhancement by utilizing the high temperature sensitivity of the thermosensitive material. Simultaneously, the cascaded Fabry-Perot interferometer (FPI) structure formed between the SMF and the thermosensitive material end-face creates the Vernier effect, which enables the second-stage sensitivity enhancement through the amplification characteristics of the Vernier effect. Through this two-stage enhancement mechanism, the sensor achieves improved flow velocity sensitivity in high-velocity regions and an extended measurement range. The sensing performance of the proposed high-sensitivity fiber-optic Fabry-Perot thermal flow velocity sensing method was theoretically analyzed using PDMS as the thermosensitive material. Concurrently, the sensor fabrication process was investigated, resulting in the successful fabrication of a physical sensor prototype. Experimental analysis was conducted to evaluate key sensing performance metrics, including sensitivity, maximum measurable flow velocity, and repeatability. The experimental results demonstrate that the sensor exhibits a temperature sensitivity of 1.399 nm/℃ and achieves a maximum measurable flow velocity of 25 m/s. Within the range of 17~25 m/s, the sensor′s response curve shows excellent linearity (R2=0.99), with a flow velocity sensitivity of 1.45 nm/(m/s). The repeatability deviation of sensitivity is only 1.24%, indicating excellent consistency. Owing to its high sensitivity, extended velocity measurement range, and compact form factor, this sensing method shows strong potential for industrial applications.

    参考文献
    相似文献
    引证文献
引用本文

李太文,刘志远,韩博,廖祖浩,张俊哲.基于游标效应的高灵敏度光纤 Fabry-Perot 热式流速传感技术研究[J].仪器仪表学报,2025,46(6):48-58

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-09
  • 出版日期:
文章二维码