多域对抗迁移的轨道列车转向架故障诊断方法
DOI:
CSTR:
作者:
作者单位:

1.西南交通大学信息科学与技术学院成都610031; 2.四川大学电气工程学院成都610065

作者简介:

通讯作者:

中图分类号:

TP206+.3TH165+.3

基金项目:

中央基础研究培育支持计划理科培育专项(XJ2024001901)项目资助


A multi-domain adversarial transfer method for fault diagnosis of railway bogies
Author:
Affiliation:

1.School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031, China; 2.College of Electrical Engineering,Sichuan University, Chengdu 610065, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    轨道列车转向架系统是确保列车运行安全的关键子系统之一,转向架受线路、时间段、气候条件影响较大,工况复杂多变,特定工况故障标签数据少。传统深度学习故障诊断方法通常依赖于大规模标注数据,且模型在跨域任务中的泛化能力较差;现有的转向架迁移学习诊断方法普遍缺乏对源域内部特征分布的有效对齐,增加了负迁移风险,限制了模型的迁移性能。为缓解上述问题,故创新地提出了一种多域对抗迁移的轨道列车转向架故障诊断方法,实现了轨道列车转向架多工况故障特征对齐,提升了跨工况下的故障诊断性能。首先,在包含多工况的源域上进行预训练,预训练过程中使用域对抗融合方法对齐各工况特征,完成多工况通用特征学习;随后,将预训练模型进行部分冻结,并分别在20%和5%目标域数据上微调,完成目标任务适应;在测试集上对微调完成模型进行测试,分别取得98.48%、93.00%平均分类召回率,0.13%、0.58%平均分类误报率,召回率、误报率、精确率、F1分数各指标平均值与最差值均高于对比方法。实验表明,所提方法仅基于易获取的电机三相电流和转速数据,对动力传动链级联部件的故障诊断准确率更高,尤其在易混淆故障类型上表现更优;在目标域数据极少时,仍可有效利用源域不同工况数据提升诊断准确率。

    Abstract:

    The bogie system of a railway train is one of the key subsystems ensuring operational safety. It is significantly affected by factors such as track conditions, time periods, and climate, leading to complex and variable working conditions, while fault-labeled data under specific conditions are scarce. Traditional deep learning-based fault diagnosis methods typically rely on large-scale labeled datasets and often exhibit poor generalization in cross-domain tasks. Existing transfer learning methods for bogie diagnosis generally lack effective alignment of internal feature distributions within the source domain, increasing the risk of negative transfer and limiting the model′s transfer performance. To address these issues, this article proposes an innovative multi-domain adversarial transfer method for fault diagnosis of railway bogies, aiming to align fault features of railway bogies under multiple operating conditions and enhance diagnostic performance across domains. First, pretraining is conducted on a source domain that includes multiple operating conditions. During pretraining, a domain-adversarial fusion method is used to align features across different conditions and to learn generalizable features. Then, the pretrained model is partially frozen and fine-tuned on 20% and 5% of the target domain data, respectively, to adapt to the target task. Testing on the test set achieves average classification recall rates of 98.48% and 93.00%, and average false alarm rates of 0.13% and 0.58%, respectively. Across all evaluation metrics—including recall, false alarm rate, precision, and F1-score—both the average and worst-case values outperform comparison methods. Experimental results show that the proposed method achieves higher diagnostic accuracy for faults in the power transmission chain based solely on easily accessible threephase motor current and rotational speed data. It performs particularly well for confusing fault types and maintains effective diagnostic capabilities even with minimal target domain data by leveraging diverse working condition data from the source domain.

    参考文献
    相似文献
    引证文献
引用本文

楚晓艳,刘星,苗强.多域对抗迁移的轨道列车转向架故障诊断方法[J].仪器仪表学报,2025,46(6):263-275

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-09
  • 出版日期:
文章二维码