低压台区用户表前分支线漏电故障定位方法
DOI:
CSTR:
作者:
作者单位:

1.长沙理工大学电气与信息工程学院长沙410014; 2.广东电网有限责任公司东莞供电局东莞530221

作者简介:

通讯作者:

中图分类号:

TN912TH89

基金项目:


Leakage fault location method for branch lines before user meters in low voltage distribution system
Author:
Affiliation:

1.School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410014, China; 2.Dongguan Power Supply Bureau of Guangdong Power Grid Corporation, Dongguan 530221, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对低压台区表前漏电位置隐蔽性高,传统人工排查方式依赖于运维人员经验水平、间歇性漏电定位难度大等问题,提出了一种低压台区用户表前分支线漏电定位方法。首先基于电气先验知识,构建表前漏电物理模型分析漏电前后用户最短路径虚拟阻抗变化机理特征,建立台区用户多元线性回归方程求解用户时序虚拟阻抗矩阵,将其按列展平后作为后续模型输入。其次,建立邻近和全局关联对称相对熵模型,采用分段聚合法改进模型计算输出形式,将表前漏电用户定位问题转化为时间序列异常检测问题。在传统重构损失函数中引入最小最大化对抗优化机制,提高模型对于单一关联特征的提取能力,进一步放大正常与表前漏电用户的特征差异。结合对称相对熵协同重构误差异常评分机制,将超出阈值分数的用户划归为异常用户。搭建IEEE欧洲低压馈线系统,仿真多种漏电场景获得充足训练样本后对模型进行最优调参和消融实验,结果表明所提模型检测性能较同类算法更优。最后,在考虑台区存在停电/空载用户特殊场景以及电表量测误差、电磁干扰等影响因素下,模型表现出较高的抗干扰性,并在真实台区测试中验证了所提模型的有效性和泛用性。

    Abstract:

    To address the high concealment of pre-meter leakage locations in low-voltage distribution networks-as well as the limitations of traditional manual inspection methods that rely heavily on maintenance personnel experience and struggle with intermittent leakages-this paper proposes a branch-line leakage localization method targeting users on the customer side of the meter. First, leveraging electrical prior knowledge, a physical model of pre-meter leakage is established, and the underlying mechanism of changes in users′ shortest-path virtual impedance before and after leakage is analyzed. Multivariate linear regression equations are then constructed for users in a distribution area to derive temporal virtual impedance matrices, which are flattened column-wise as model input. A symmetric relative entropy model is proposed to capture both local (adjacent) and global dependencies among users. Its output accuracy is enhanced through a segment aggregation strategy, effectively transforming the leakage localization problem into a time-series anomaly detection task. To improve the model′s sensitivity to subtle feature deviations, a minimax adversarial optimization mechanism is introduced into the reconstruction loss function to amplify differences between normal and leaking users. This is further combined with a collaborative anomaly scoring method based on symmetric relative entropy, enabling robust identification of anomalous users exceeding a predefined threshold. Extensive simulations on the IEEE European low-voltage feeder system under various leakage scenarios are conducted to support hyperparameter tuning and ablation studies. Experimental results demonstrate that the proposed method outperforms existing algorithms in detection accuracy. Moreover, by addressing edge cases-such as outages, no-load users, measurement errors, and electromagnetic interference-the model exhibits strong anti-interference capability. Its effectiveness and generalization ability are further validated through deployment tests on real-world distribution networks.

    参考文献
    相似文献
    引证文献
引用本文

陈磊,苏华锋,苏盛,冯萧飞,李彬.低压台区用户表前分支线漏电故障定位方法[J].仪器仪表学报,2025,46(6):276-289

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-09
  • 出版日期:
文章二维码