基于KD-Tree加速的多线激光传感器数据融合方法
DOI:
CSTR:
作者:
作者单位:

重庆理工大学机械工程学院重庆400054

作者简介:

通讯作者:

中图分类号:

TH74

基金项目:

国家自然科学基金(52305247)项目资助


Data fusion method for multi-line laser sensor based on KD-Tree acceleration
Author:
Affiliation:

College of Mechanical Engineering, Chongqing University of Technology, Chongqing 400054, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对多个线激光传感器协同扫描测量中大规模点云数据融合效率低、拼接误差大、处理复杂度高等问题,故提出一种基于KD-Tree加速的多个线激光传感器数据融合方法,通过动态邻域搜索策略和自适应半径调整机制,实现点云数据的高效排序与并行平滑优化。首先,构建KD-Tree空间索引结构,创新性地设计动态邻域搜索策略,实现二维轮廓数据从无序到有序的快速重组,算法时间复杂度由传统方法的O(n2logn)降至O(nlogn);其次,结合OpenMP多线程并行计算技术改进移动最小二乘算法,提出K-MLS并行平滑方法,算法的时间复杂度从O(n2)优化至O(nlogn),显著提升大规模点云的处理效率。在火车车轮测量系统中验证表明,当点云规模达到209万时,排序算法耗时较传统方法提升35.7倍,平滑算法耗时较传统方法提升84.5倍。最后,对比分析了该方法在提升点云质量方面的实际效果,算法可有效填补部分扫描数据的空缺,在轮辋面测量的最大偏差从±0.279 mm降低至±0.085 mm,三维点云配准的均方误差由0.323 mm优化至0.106 mm。实验数据表明,所提方法在保持亚毫米级精度的同时,显著提升了百万级点云数据的处理效率,有效解决了多传感器数据融合中的拼接误差、重叠区密度不均等问题,验证了算法在工业在线测量场景中的有效性与鲁棒性。

    Abstract:

    To address the challenges of low fusion efficiency, significant stitching errors, and high processing complexity in large-scale point cloud data fusion during collaborative scanning with multiple line laser sensors, this paper proposes a KD-Tree-accelerated data fusion method for multi-line laser sensor systems. The method leverages a dynamic neighborhood search strategy and an adaptive radius adjustment mechanism to enable efficient ordering and parallel smoothing optimization of point cloud data. First, a KD-Tree spatial indexing structure is constructed, and an innovative dynamic neighborhood search strategy is designed to rapidly reorganize disordered 2D contour data into ordered sequences, reducing the algorithm′s time complexity from the traditional O(n2logn) to O(nlogn). Second, by integrating OpenMP multi-threaded parallel computing with an improved Moving Least Squares algorithm, a K-MLS parallel smoothing method is proposed, optimizing the time complexity from O(n2) to O(nlogn), significantly enhancing the processing efficiency for large-scale point clouds. The proposed method was validated in a train wheel measurement system. When processing 2.09 million points, the sorting algorithm achieved a 35.7-fold speedup compared to traditional approaches, while the smoothing algorithm exhibited an 84.5-fold performance improvement. Comparative analysis further demonstrates the method′s effectiveness in improving point cloud quality: it successfully fills data gaps, reduces the maximum deviation in wheel tread measurement from ±0.279 mm to ±0.085 mm, and lowers the mean square error of 3D point cloud registration from 0.323 mm to 0.106 mm. Experimental results confirm that the proposed method maintains sub-millimeter accuracy while significantly boosting processing efficiency for million-scale point clouds. It effectively addresses issues such as stitching errors and uneven point density in overlapping regions during multi-sensor data fusion, proving its robustness and applicability in industrial online measurement scenarios.

    参考文献
    相似文献
    引证文献
引用本文

李欣飞,鄢然,夏磊,赵青,张凯飞.基于KD-Tree加速的多线激光传感器数据融合方法[J].仪器仪表学报,2025,46(5):50-59

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-12
  • 出版日期:
文章二维码