基于 DSG-ResNet34 的聚乙烯燃气管道电熔焊接缺陷检测
DOI:
CSTR:
作者:
作者单位:

1.兰州理工大学石油化工学院兰州730000;2.甘肃省特种设备检验检测研究院兰州730000

作者简介:

通讯作者:

中图分类号:

TH49

基金项目:

国家自然科学基金(52466003)、甘肃省重点研发计划(23YFGA0059)项目资助


Defects detection of electric fusion welding of polyethylene gas pipeline based on DSG-ResNet34
Author:
Affiliation:

1.School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730000, China; 2.Gansu Province Special Equipment Inspection and Testing Institute, Lanzhou 730000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    PE燃气管道的连接质量能直接影响中低压燃气的正常输送,在电熔焊接时产生的结构畸变、冷焊等缺陷会显著削弱管道的力学性能,威胁燃气管网的稳定运行。因此,基于实地采集的PE燃气管道电熔焊接缺陷DR图像数据集,提出了基于DSG-ResNet34模型的缺陷检测方法,以实现对电熔焊接缺陷进行快速精准地检测。该网络模型由主干网络CBAM-ResNet34模块、动态稀疏门控金字塔DSG-FPN、多尺度检测头3个部分组成,首先通过主干网络CBAMResNet34结构从通道和空间两个维度提升网络模型对缺陷特征的关注度,然后通过动态稀疏门控金字塔DSG-FPN结构的动态稀疏门控模块、Inception模块、稀疏连接动态融合多尺度缺陷特征,有效保留小目标特征、抑制背景噪声,最后通过多尺度检测头结构将提取到的丰富特征转化为具体的检测结果。DSG-ResNet34模型的缺陷检测准确率最高可达95.5%、P2层精确率最高可达82.7%、小目标召回率最低为85.6%、检测速度可达68 fps、参数量为22.3×106,该模型能快速定位识别孔洞、熔融面夹杂、结构畸变、冷焊这4类典型电熔焊接缺陷,检测性能与速度优于其他网络模型。为PE管道焊接质量智能化检测提供了高精度解决方案,对保障燃气管网安全运行具有重要意义。

    Abstract:

    The connection quality of PE gas pipelines can directly affect the normal transmission of medium and low-pressure gas. Structural distortion, cold welding and other defects produced by electrofusion welding will significantly weaken the mechanical properties of the pipeline, which will threaten the stable operation of the gas pipeline network. Therefore, based on the DR Image datasets of PE gas pipelines electrofusion welding defects collected on-site, this paper proposes a defect detection method based on the DSG-ResNet34 model to realize rapid and accurate detection of electrofusion welding defects. This network model consists of three parts: the backbone network CBAM-ResNet34 module, the dynamic sparse gating feature pyramid networks DSG-FPN, and the multi-scale detection head. Firstly, the CBAM-ResNet34 structure of backbone network is used to enhance the network model′s attention to defect features from two dimensions of channel and space. Then, the DSG-FPN, which integrates a dynamic sparse gating module, an Inception module, and sparse connections, dynamically fuses multi-scale defect features-effectively preserving small-target features while suppressing background noise. Finally, the multi-scale detection head converts the enriched features into precise detection outputs. The DSG-ResNet34 model achieves a defect detection accuracy of up to 95.5%, with a P2 layer precision of 82.7% and a minimum recall rate of 85.6% for small targets. The detection speed reaches 68 fps, and the model contains 22.3 million parameters. This model can quickly locate and identify four typical electrofusion welding defects: holes, fused surface inclusion, structural distortion and cold welding. Both its detection performance and speed outperform existing models. This study provides a high-precision solution for intelligent testing of PE pipeline welding quality, which is of great significance for ensuring the safe operation of gas pipeline network.

    参考文献
    相似文献
    引证文献
引用本文

凌晓,刘露,孙宝财,张正棠,徐晓.基于 DSG-ResNet34 的聚乙烯燃气管道电熔焊接缺陷检测[J].仪器仪表学报,2025,46(6):228-240

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-09
  • 出版日期:
文章二维码