六自由度机械臂参数化标定模型的误差分析
DOI:
CSTR:
作者:
作者单位:

中国计量大学计量测试与仪器学院杭州310018

作者简介:

通讯作者:

中图分类号:

TH86

基金项目:

国家自然科学基金(52475576,U24A20134)项目资助


Error analysis of parametric calibration models for 6-DOF robotic manipulators
Author:
Affiliation:

College of Metrology Measurement & Instrument, China Jiliang University, Hangzhou 310018, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    六自由度机械臂模型参数的高度耦合和复杂的链路关系是引起多参数辨识偏差的主要原因,这种复杂的多参数辨识链路很难准确地进行误差评估,影响机械臂工作精度的补偿。为此,提出了基于灰关联分析的参数化标定模型误差分析方法,揭示高耦合多参数辨识链路的误差传播关系。首先,基于辨识参数的误差传递链路分析,建立机械臂标定误差模型,实现笛卡尔空间位姿误差在关节空间的量化分解;其次,通过参数辨识算法与误差传递链的协同作用,估计关节参数序列的误差值。针对参数偏差的强耦合特性,引入灰色关联度分析方法。通过计算各参量间的关联系数,量化评估各关节轴特征参数间的关联性,进而确定误差补偿的优先级。实验结果表明,相较于平移误差,旋转误差在运动链路的传递过程中具有更强的耦合性。通过定位误差和方向误差的对比分析,发现前三轴的旋转角度和y轴方向的角度偏差对末端误差的贡献度最高,因此应优先补偿这些关键参数。实验数据表明,末端定位误差为390 mm,方向误差为0.06°。通过解耦复杂参数链路、量化误差贡献度,并结合误差参数的敏感性分析,提出优化补偿策略,从而显著提升了机械臂标定效率。

    Abstract:

    The primary sources of multi-parameter identification bias in six degree-of-freedom (DOF) robotic manipulators are the highly coupled model parameters and complex linkage relationships. Such intricate multi-parameter identification chains make it challenging to conduct accurate error assessment, thereby affecting the compensation of the manipulator′s operational accuracy. To address this challenge, a grey-correlation-analysis-based error analysis method for parametric calibration models is proposed, which reveals the error propagation relationships within highly coupled multi-parameter identification chains. First, based on the analysis of error propagation chains for identified parameters, a robotic manipulator calibration error model is established to achieve the quantitative decomposition of Cartesian pose errors in joint space. Second, through the synergistic integration of parameter identification algorithms and error propagation chains, the error values of joint parameter sequences are estimated. To address the strong coupling characteristics of parameter deviations, the grey relational analysis method is introduced. By calculating the correlation coefficients between various parameters, the interrelationships among the characteristic parameters of each joint axis are quantitatively evaluated, thereby determining the priority of error compensation. Experimental results indicate that, compared to translational errors, rotational errors exhibit stronger coupling characteristics during their propagation through the kinematic chain. Through comparative analysis of positioning and orientation errors, it was found that the angular deviations in the first three joints, particularly those along the y-axis direction, contribute most significantly to the end-effector′s overall error. Therefore, these critical parameters should be prioritized in error compensation. Experimental data show that the final positioning error is 3.90 mm, with an orientation error of 0.06°. This study improves the calibration efficiency of robotic arms by decoupling complex parameter linkages, quantifying error contributions, and integrating sensitivity analysis of error parameters to develop an optimized compensation strategy.

    参考文献
    相似文献
    引证文献
引用本文

王妍,江文松,罗哉,杨力,金楦杰.六自由度机械臂参数化标定模型的误差分析[J].仪器仪表学报,2025,46(6):130-138

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-09
  • 出版日期:
文章二维码