多线圈联合学习的核电厂控制棒驱动机构动作状态异常检测方法
DOI:
CSTR:
作者:
作者单位:

福州大学电气工程与自动化学院福州350108

作者简介:

通讯作者:

中图分类号:

TM623.7TH132

基金项目:

福建省高校产学合作项目(2023H6006)资助


Anomaly detection method for motion status of control rod drive mechanism in nuclear power plants by multi-coil joint learning
Author:
Affiliation:

College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    控制棒驱动机构(CRDM)作为核电厂的关键执行部件,通过电磁-机械耦合控制多组线圈电流信号,以实现控制棒精准动作,其健康状态关乎反应堆安全运行。然而,现有CRDM异常检测方法主要聚焦于单组线圈建模,未充分考虑多线圈间的变化规律和动态模式。为此,提出一种多线圈联合学习(MCJL)模型,旨在精准检测控制棒动作过程中的潜伏性异常。首先,定义线圈节点和全连接边,并引入衰减邻接矩阵,以构建多线圈联动图结构,进而表征CRDM内部提升线圈、移动线圈和保持线圈间的动态耦合关系。其次,采用移动图卷积网络,以高效捕获多线圈间的局部时序依赖关系,并协同重构3组线圈的电流信号。最后,通过计算重构信号和真实信号间的残差,利用多尺度动态检测策略实现CRDM逐个动作周期的异常检测。对某地区压水堆机组的历史监测数据与模拟异常样本进行算例分析,表明该方法可有效捕获多线圈间的动态耦合关系并提取驱动机构动作的时序特征,实现电流信号的精准重构。相较于多种异常检测方法,所提MCJL模型在信号重构和异常检测方面具有更优越的性能,其动态阈值策略可灵活调整决策边界,具有较强的容错能力。

    Abstract:

    Control rod drive mechanisms (CRDMs), as critical actuators in nuclear power plants, regulate control rod motion by manipulating multiple coil currents through electromagnetic-mechanical coupling. Their operational integrity is vital for ensuring reactor safety. However, existing anomaly detection approaches predominantly model individual coils, neglecting the dynamic interactions among coils and the evolving operational patterns. To address this gap, we propose a multi-coil joint learning (MCJL) model for accurately detecting latent anomalies during control rod operation. In this approach, coil nodes and fully connected edges are defined, and a decay adjacency matrix is introduced to construct a multi-coil interaction graph that captures the dynamic coupling among the lift, moving, and solid coils. A moving graph convolutional network is then employed to efficiently extract local temporal dependencies across coils while jointly reconstructing the current signals of all three coils. The residuals between the reconstructed and actual signals are subsequently calculated, enabling per-cycle anomaly detection using a multi-scale dynamic strategy. Experimental validation using historical data and simulated anomalies from a pressurized water reactor demonstrates that the proposed method effectively captures dynamic inter-coil coupling and temporal patterns, achieving high-precision signal reconstruction. Compared with existing methods, MCJL exhibits superior performance in both reconstruction and anomaly detection. Furthermore, its dynamic thresholding strategy provides flexible decision boundaries and strong fault tolerance.

    参考文献
    相似文献
    引证文献
引用本文

林蔚青,缪希仁,江灏,叶铭新,陈静.多线圈联合学习的核电厂控制棒驱动机构动作状态异常检测方法[J].仪器仪表学报,2025,46(6):290-303

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-09
  • 出版日期:
文章二维码