基于深度学习的工业轴承缺陷检测算法研究
DOI:
CSTR:
作者:
作者单位:

1.哈尔滨理工大学自动化学院哈尔滨150080; 2.黑龙江省复杂智能系统与集成重点实验室哈尔滨150080

作者简介:

通讯作者:

中图分类号:

TH701TP391.4

基金项目:


Research on industrial bearing defect detection algorithm based on deep learning
Author:
Affiliation:

1.School of Automation, Harbin University of Science and Technology, Harbin 150080, China; 2.Key Laboratory of Complex Intelligent Systems and Integration, Heilongjiang Province, Harbin 150080, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有轴承缺陷检测算法准确率低、存在误检以及漏检现象严重的问题,为解决这些问题,提出了一种基于YOLOv8n的轴承缺陷检测算法(LASW-YOLOv8)。该算法在YOLOv8n的基础上,引入了轻量化且高效的LiteShiftHead检测头,结合SPConv、REG和CLS模块,提升了特征提取、目标框回归和类别分类的效率与准确性。此外,算法还引入了自适应旋转卷积核模块(ARConv),增强了对多方向缺陷的检测能力;颈部网络优化模块(SAF)进一步提升了特征提取效率;同时采用Inner-WIoU损失函数,通过优化边界框定位精度并增强对小目标及复杂形状缺陷的检测能力。实验结果表明,LASW-YOLOv8算法在多个性能指标上优于其他主流算法。该算法的准确率和召回率分别提升至97.2%和96.6%,相较于YOLOv8n分别提高了3.4%和4.5%。同时,mAP0.5和mAP0.5:0.95分别达到了98.9%和73.3%,并且在运行速度上实现了83 fps。这些结果充分证明了所提改进算法的有效性,不仅能有效减少误检和漏检现象,还满足了工业检测对高准确率和实时性的要求。此外,在东北大学公共数据集(NEU-DET)的实验中,LASW-YOLOv8算法在准确率、召回率、mAP0.5和mAP0.5:0.95这4个关键指标上均表现最佳,分别为79.3%、79.9%、84.1%和49.1%,优于其他主流算法。这一表现证明了LASW-YOLOv8算法具有出色的泛化能力和鲁棒性。

    Abstract:

    Aiming at the existing bearing defect detection algorithms with low accuracy, misdetection as well as serious leakage, a bearing defect detection algorithm based on YOLOv8n (LASW-YOLOv8) is proposed to solve these problems. Based on YOLOv8n, the algorithm introduces a lightweight and efficient LiteShiftHead detection head, which is combined with SPConv, REG and CLS modules to improve the efficiency and accuracy of feature extraction, target frame regression and category classification. In addition, the algorithm also introduces the Adaptive Rotation Convolutional Kernel module (ARConv), which enhances the detection of multi-directional defects; the Neck Network Optimisation module (SAF), which further improves the efficiency of feature extraction; and the Inner-WIoU loss function, which is used to optimise the bounding box localisation accuracy and to enhance the detection of small targets and complex shape defects. Experimental results show that the LASW-YOLOv8 algorithm outperforms other mainstream algorithms in several performance indicators. The algorithm achieves an accuracy of 97.2% and a recall of 96.6%, representing improvements of 3.4% and 4.5%, respectively, compared to the original YOLOv8n. Meanwhile, mAP0.5 and mAP0.5:0.95 achieved 98.9% and 73.3%, respectively, and ran at 83 fps. These results fully demonstrate the effectiveness of the proposed algorithm, which not only effectively reduces the phenomenon of false detection and missed detection, but also meets the requirements of high accuracy and real-time performance in industrial inspection. In addition, in the experiments on the Northeastern University public dataset (NEU-DET), the LASW-YOLOv8 algorithm outperforms other mainstream algorithms in the four key metrics of accuracy, recall, mAP0.5, and mAP0.5:0.95, which are 79.3%, 79.9%, 84.1%, and 49.1%, respectively. This performance proves that the LASW-YOLOv8 algorithm has excellent generalisation ability and robustness.

    参考文献
    相似文献
    引证文献
引用本文

张彪,荀荣科,许家忠.基于深度学习的工业轴承缺陷检测算法研究[J].仪器仪表学报,2025,46(4):136-149

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-23
  • 出版日期:
文章二维码