多源不平衡数据下基于联邦学习的谐波减速器故障诊断方法
DOI:
CSTR:
作者:
作者单位:

1.哈尔滨理工大学黑龙江省模式识别与信息感知重点实验室哈尔滨150080; 2.哈尔滨工业大学自动化测试与控制研究所哈尔滨150001

作者简介:

通讯作者:

中图分类号:

TN911.7TH165.3

基金项目:

国家自然科学基金(52375533)、黑龙江省自然科学基金(PL2024E022)、山东省自然科学基金(ZR2023ME057)、哈尔滨市制造业科技创新人才(2023CXRCCG017)项目资助


Fault diagnosis method for harmonic reducers based on federated learning with multi-source imbalanced data
Author:
Affiliation:

1.Heilongjiang Province Key Laboratory of Pattern Recognition and Information Perception, Harbin University of Science and Technology, Harbin 150080, China; 2.Automatic Test and Control Institute, Harbin Institute of Technology, Harbin 150001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对工业机器人谐波减速器不同故障类别样本数量不平衡,以及单源信号获取信息往往有限,导致故障诊断准确率不高的问题,提出一种多源不平衡数据下基于联邦学习的谐波减速器故障诊断方法。该方法通过对不同用户的多源信号做小波变换,将一维信号转换为二维图像,构建时频图数据集;利用改进的数据增强方法对不平衡数据集进行均衡处理;引入有效的通道注意力机制,并通过可学习的权重加权残差分支的输出,以增强模型对不同输入信号残差信息的适应性和对数据关键特征的提取能力;通过改进的多模态变分自编码器挖掘多源信号之间的互补信息进行特征融合,并采用焦点损失函数作为训练损失函数,使模型能够更关注错分频率较高的类别样本,构建多用户个性化本地模型;服务器端聚合用户端本地模型参数并更新全局模型,通过联邦学习保障用户端本地的孤岛隐私数据,从而对多源不平衡数据下谐波减速器进行故障诊断。通过搭建谐波减速器信号采集实验平台进行验证,所提方法能够有效提取谐波减速器多源不平衡数据的特征并实现信息融合,平均故障诊断准确率为98.8%,性能优于所对比的方法。

    Abstract:

    Aiming at the problems of imbalanced sample sizes across different fault categories in industrial robot harmonic reducers and the limited information obtained from single-source signals, which result in low diagnostic accuracy, a fault diagnosis method for harmonic reducers is proposed based on federated learning under multi-source imbalanced data. This method performs wavelet transform on the multi-source signals of different users to convert one-dimensional signals into two-dimensional images, constructing a time-frequency dataset. An improved data augmentation method is then applied to balance the dataset. The efficient channel attention is introduced, and the output of the residual branches is weighted by learnable weights, which can enhance the model′s adaptability to residual information of different input signals and the ability to extract key features of the data. A modified multimodal variational autoencoder is used to mine the complementary information among multi-source signals for feature fusion, and adopting the focal loss function as the training loss function, the model can pay more attention to category samples with high misclassification frequencies, thus constructing personalized local models for multi-user. The server aggregates the local model parameters at the multi-user and updates the global model, multi-user local island privacy data is protected through federated learning, so as to achieve the fault diagnosis of harmonic reducers under multi-source imbalanced data. The effectiveness of the proposed method is verified by building a signal acquisition experimental platform for harmonic reducers. The proposed method can effectively extract the features from multi-source imbalanced data of harmonic reducers and achieve information fusion, achieving an average fault diagnosis accuracy of 98.8%, outperforming the compared methods.

    参考文献
    相似文献
    引证文献
引用本文

王玉静,叶柏宏,康守强,刘连胜,孙宇林.多源不平衡数据下基于联邦学习的谐波减速器故障诊断方法[J].仪器仪表学报,2025,46(6):317-329

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-09
  • 出版日期:
文章二维码