数控机床运动精度混沌自演化预测方法
DOI:
CSTR:
作者:
作者单位:

重庆理工大学机械工程学院重庆400054

作者简介:

通讯作者:

中图分类号:

TH115

基金项目:

国家自然科学基金(52375083)、重庆英才计划(CQYC20220207232/cstc2024ycjh-bgzxm0052)、重庆市技术创新与应用重点课题(CSTB2022TIAD-CUX0017)项目资助


Chaos self-evolution prediction method for motion accuracy of CNC machine tools
Author:
Affiliation:

College of Mechanical Engineering, Chongqing University of Technology, Chongqing 400054, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于深度学习的精度预测模型会因不能自适应新的劣化数据而产生“灾难性遗忘”现象以致逐渐失效,这是人工智能领域当前研究的热点和难点,也是制约智能装备发展的难点之一。数控机床的运动精度演化过程具有混沌特性,为此,提出一种基于混沌理论与增量学习的数控机床运动精度混沌自演化预测方法。首先,证明了数控机床运动精度的动态变化是一个复杂非线动力学系统的混沌演化过程,提出通过相空间重构恢复运动精度系统在混沌相空间中的演化轨迹。然后,建立基于深度长短时记忆网络的运动精度混沌演化模型,利用LSTM对时间序列长期依赖关系的出色捕捉能力,在混沌相空间中追踪数控机床运动精度演化轨迹的内在规律。最后,提出在混沌演化模型中引入无遗忘增量学习方法,建立运动精度混沌自演化预测模型。该模型采用联合优化方法和知识蒸馏方法来更新参数,使模型在适应新劣化数据的同时也传递旧任务的软目标,在训练新数据时解决数据集更新时的“灾难性遗忘”问题,提升长时间预测的准确性和鲁棒性。实验表明,利用提出方法进行预测的评价指标MSE、MAE和MAPE相较未加入无遗忘模块其波动幅度分别下降了70.56%、33.31%和35.77%,证明了模型预测的准确性,进一步的模块消融实验也验证了该方法在预测准确度和鲁棒性上均优于传统方法。

    Abstract:

    Prediction models based on deep learning often suffer from “catastrophic forgetting” caused by the inability to adapt to new degraded data. This is currently a hot and difficult topic in the field of artificial intelligence research, and also one of the constraints on the development of intelligent equipment. The accuracy evolution process of CNC machine tools has chaotic characteristics. Therefore, a chaotic self-evolution prediction method for the motion accuracy of CNC machine tools based on chaos theory and incremental learning is proposed. Firstly, it has been proven that the dynamic variation of motion errors in CNC machine tools is a chaotic evolution process of a complex nonlinear dynamic system. It is proposed to reconstruct the evolution trajectory of the precision system in the chaotic phase space through phase space reconstruction. Then, a motion accuracy chaotic evolution model based on deep long short-term memory (LSTM) network is established, utilizing the LSTM network's excellent ability to accurately capture long-term dependencies of time series, to track the inherent laws of the evolution trajectory of CNC machine tool motion accuracy in chaotic phase space. Finally, a learning without forgetting incremental learning method is proposed in the chaotic evolution model to establish a motion accuracy chaotic self-evolution prediction model. This model uses joint optimization and knowledge distillation methods to update parameters, allowing the model to adapt to new degraded data while also conveying the soft objectives of old tasks. It solves the problem of “catastrophic forgetting” during dataset updates, improving the accuracy and robustness of long-term predictions. The experiment shows that the evaluation indicators MSE,MAE and MAPE predicted by the method proposed have decreased in fluctuation amplitude by 70.56%, 33.31%, and 35.77%, respectively, compared to the non-LwF module. This proves the accuracy of the proposed prediction method. Further module ablation experiments also verify that the method proposed is superior to traditional methods in terms of prediction accuracy and robustness.

    参考文献
    相似文献
    引证文献
引用本文

杜柳青,王煜晓,余永维.数控机床运动精度混沌自演化预测方法[J].仪器仪表学报,2025,46(4):283-294

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-23
  • 出版日期:
文章二维码