基于人体运动干扰建模预测的外肢体机器人补偿控制研究
DOI:
CSTR:
作者:
作者单位:

东南大学仪器科学与工程学院南京210096

作者简介:

通讯作者:

中图分类号:

TH89

基金项目:

国家自然科学基金(62173089)项目资助


Research on compensation control of supernumerary robotic arms based onmodeling and prediction of human motion disturbances
Author:
Affiliation:

School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对人机协作中外肢体机器人受到人体运动干扰从而影响末端工作精度的问题,提出一种基于人体运动干扰建模预测的外肢体机器人补偿控制方法。首先,为了精确测量人体运动干扰,设计了融合IMU和视觉估计的T265视觉惯性里程计传感方案。其次,针对人-外肢体系统进行了运动学建模与分析,构造了末端位姿关于人体运动干扰和外肢体机器人关节运动参数的函数,并以末端位姿保持不变作为控制目标,提出一种基于PID前馈控制的运动干扰补偿控制方法。此外,为了提高人体运动干扰补偿控制的响应速度,提出一种基于卡尔曼滤波器的人体运动干扰预测方法,通过构建人体运动状态空间方程,利用卡尔曼滤波算法实现了人体运动轨迹预测。最后,设计了人体运动干扰预测实验和人体运动干扰补偿控制实验。实验结果表明,人体运动干扰预测值与实际值的绝对误差为048±032 mm,对比有无预测方法时人体运动干扰补偿控制效果,预测方法将外肢体机器人末端在工作平面内的绝对误差由318±217 mm降低至123±091 mm。实验验证了所提出的外肢体机器人补偿控制方法能够有效提高末端工作精度,且基于卡尔曼滤波的运动干扰预测方法在克服控制延迟上效果显著。

    Abstract:

    To address the degradation of endeffector accuracy in supernumerary robotic arms (SRAs) caused by human motion disturbances during humanrobot collaboration, we propose a compensation control method based on modeling and prediction of these disturbances. First, we design a sensory scheme using T265 visualinertial odometry, which integrates an inertial measurement unit (IMU) with visual estimation to accurately measure humaninduced disturbances. Next, we develop a kinematic model of the humanSRA system, expressing the endeffector pose as a function of both human motion disturbances and SRA joint movements. The control objective is to maintain a stable endeffector pose, and for this, we develop a disturbance compensation strategy using feedforward proportionalintegralderivative (PID) control. To further enhance the compensation control response speed, we propose a predictive approach utilizing a Kalman filter to estimate human motion disturbances. The Kalman filter algorithm is used to accurately predict human motion trajectories by formulating a statespace equation for human motion. Finally, we conduct experiments on both human motion disturbance prediction and disturbance compensation control. Experimental results show that the absolute error between predicted and actual disturbances is 048±032 mm. A comparison of compensation performance with and without prediction shows that the proposed method reduces the absolute error of the SRA′s endeffector on the working plane from 318±217 mm to 123±091 mm. These findings confirm that the proposed compensation control strategy effectively improves endeffector accuracy, with the Kalman filterbased prediction method significantly reducing control delay.

    参考文献
    相似文献
    引证文献
引用本文

戴欢,曾洪,张建喜,张竞天,宋爱国.基于人体运动干扰建模预测的外肢体机器人补偿控制研究[J].仪器仪表学报,2025,46(4):326-334

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-23
  • 出版日期:
文章二维码