大型薄壁构件加工变形误差综合补偿方法
DOI:
CSTR:
作者:
作者单位:

1.燕山大学起重机械关键技术全国重点实验室秦皇岛066004; 2.燕山大学机械工程学院秦皇岛066004

作者简介:

通讯作者:

中图分类号:

TH161.6

基金项目:

装备预先研究共用技术项目(920722MS)资助


The comprehensive compensation method for machining deformation errors in large thin-wall components
Author:
Affiliation:

1.State Key Laboratory of Crane Technology, Yanshan University,Qinghuangdao 066004, China; 2.School of Mechanical Engineering, Yanshan University,Qinghuangdao 066004, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对大型薄壁构件弱刚性和壁厚不均匀特性,导致在断续开槽铣削加工中槽底易发生加工变形,影响加工精度的问题,提出了一种加工变形误差综合补偿方法。首先,基于经验法开展铣削力测量试验,通过回归分析建立加工参数与铣削力映射关系,构建铣削力预测模型。针对大型薄壁构件仿真计算效率低的问题,采用等效刚度理论对薄壁构件的变形区域进行简化;在此基础上,提出了一种通过替换主结构模拟多层铣削加工的改进子结构仿真方法,并结合铣削力预测模型对大型薄壁构件进行预测加工变形,相较于全结构有限元方法计算效率提高了27.27%。其次,基于在机测量系统采集槽底壁厚数据,构建变形修正模型,综合应用层间修正系数与节点修正系数修正预测加工变形量,结合割线法对层间修正系数进行迭代计算,并基于非均匀有理B样条对离散补偿点进行加工路径拟合。最后,设计并搭建适用于大型薄壁构件机器人铣削系统的在机测量系统,并开展铣削加工误差补偿对比试验。试验结果表明,采用综合补偿方法后,加工误差较无补偿和采用镜像迭代补偿方法分别减少92.09%和77.63%。结果验证了所提出的加工变形误差综合补偿方法有效性。

    Abstract:

    To address the issue of processing deformation at the bottom of grooves during discontinuous slot milling of large thin-walled components—caused by their weak rigidity and uneven wall thickness, which impacts processing accuracy—a comprehensive compensation method for processing deformation errors is proposed. Initially, a milling force measurement experiment is conducted using empirical methods. Through regression analysis, a mapping relationship between processing parameters and milling forces is established, and a milling force prediction model is created. To overcome the low simulation calculation efficiency for large thin-walled components, the equivalent stiffness theory is applied to simplify the deformation region. An improved substructure simulation method is then introduced by replacing the main structure to simulate multi-layer milling processes. Combined with the milling force prediction model, this method predicts processing deformation with a 27.27% improvement in calculation efficiency compared to the full-structure finite element method. Next, using an in-machine measurement system to collect wall thickness data at the groove bottom, a deformation correction model is developed. The predicted processing deformation is corrected by applying inter-layer and node correction coefficients. The inter-layer correction coefficients are iteratively calculated using the secant method, and discrete compensation points are fitted to the machining path using non-uniform rational B-splines. Finally, an in-machine measurement system tailored for the robotic milling of large thin-walled components is designed and implemented. Comparative experiments on milling processing error compensation are conducted. Experimental results demonstrate that, after applying the comprehensive compensation method, processing error is reduced by 92.09% and 77.63% compared to no compensation and the mirror iterative compensation method, respectively. These findings validate the effectiveness of the proposed comprehensive compensation approach for processing deformation errors.

    参考文献
    相似文献
    引证文献
引用本文

宜亚丽,陈一凡,程阳洋,王志勇,金贺荣.大型薄壁构件加工变形误差综合补偿方法[J].仪器仪表学报,2025,46(4):1-10

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-23
  • 出版日期:
文章二维码