基于多阶段动态过滤的静态点云地图生成算法
DOI:
CSTR:
作者:
作者单位:

东南大学仪器科学与工程学院南京210096

作者简介:

通讯作者:

中图分类号:

TP242.6TH701

基金项目:


Multi-Stage dynamic filtering-based static point cloud map generation algorithm
Author:
Affiliation:

School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在动态场景中,诸如行人、车辆等动态对象出现在传感器的观测范围内,对静态点云地图的构建带来了显著干扰。这些动态目标在地图的生成过程中常常留下“鬼影”,严重影响地图构建精度与完整性。为了解决该问题,提出了一种面向复杂动态场景的高精细静态点云地图生成算法,旨在保持地图构建精度的同时,有效剔除动态干扰点。首先,对点云进行序列化处理并结合区域化地面分割,以减少地面点对动态判别的干扰。然后,设计了一种多阶段的动态点云离线滤除策略。在动态识别的前两阶段,分别采用两种分布式描述符(D-POD与D-PODV)来描述点云的空间占用和分布情况,并结合扫描比率测试(SRT)和径向比率测试(RRT),实现对强弱动态点云的精准识别。在第3阶段,利用基于区域密度的改进自适应DBSCAN聚类算法完善对不规则动态点云的滤除。在公开数据集SemanticKITTI上的实验结果表明,所提算法能够在多种复杂场景下准确滤除动态点并生成高精细静态点云地图。与当前主流动态点云滤除算法ERASOR和Removert相比,所提算法的平均保留率分别提升3.95%和14.56%,平均拒绝率分别提升13.44%和17.46%。通过对强弱动态点云进行分阶段滤除,该研究能够有效滤除各类动态目标,同时最大限度地保留原始点云中的静态信息,确保了全局地图的结构完整性,为实现多场景通用、高精度、高可靠性的静态点云地图构建提供了有力支撑。

    Abstract:

    In dynamic environments, the presence of moving objects such as pedestrians and vehicles within the sensor′s field of view causes significant interference in the creation of static point cloud maps. These dynamic objects often result in “ghost” artifacts, severely affecting the accuracy and completeness of the generated maps. To tackle this challenge, this paper proposes a high-precision algorithm for static point cloud map generation specifically designed for complex dynamic scenarios. The goal is to effectively eliminate dynamic interference points while preserving map construction accuracy. The method begins by serializing multi-frame point cloud data and applying region-based ground segmentation to minimize the impact of ground points on dynamic point identification. A multi-stage offline dynamic point cloud filtering strategy is then implemented. In the first two stages of dynamic point identification, two distributed descriptors (D-POD and D-PODV) are used to capture the spatial occupancy and distribution patterns of the point cloud. These descriptors are combined with the scan ratio test (SRT) and radial ratio test (RRT) to precisely identify both strongly and weakly dynamic points. In the third stage, an improved adaptive DBSCAN clustering algorithm, based on regional density, is employed to further refine the removal of irregular dynamic point clouds. Experimental results using the publicly available SemanticKITTI dataset show that the proposed algorithm effectively filters out dynamic points, resulting in high-precision static point cloud maps across diverse complex scenarios. Compared to state-of-the-art dynamic point cloud filtering algorithms, ERASOR and Removert, the proposed method achieves average improvements of 3.95% and 14.56% in static point retention, and 13.44% and 17.46% in dynamic point rejection, respectively. By employing staged filtering for both strongly and weakly dynamic point clouds, the proposed method successfully eliminates various types of dynamic objects while maximizing the preservation of static information in the original point cloud. This ensures the structural integrity of the global map, providing robust support for the creation of high-precision and highly reliable static point cloud maps across a wide range of applications.

    参考文献
    相似文献
    引证文献
引用本文

范明泽,徐晓苏.基于多阶段动态过滤的静态点云地图生成算法[J].仪器仪表学报,2025,46(4):193-205

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-23
  • 出版日期:
文章二维码