基于激光雷达与相机融合的AGV动态环境目标检测算法
DOI:
CSTR:
作者:
作者单位:

1.南京林业大学机械电子工程学院南京210037; 2.北京航空航天大学仪器科学与光电工程学院北京100191; 3.中国航发四川燃气涡轮研究院成都610500

作者简介:

通讯作者:

中图分类号:

TH86TP242

基金项目:

江苏省现代农机装备与技术示范推广项目(NJ2023-16)、国家财政稳定支持项目(GJCZ-0202-2025-0004)资助


Dynamic environment target detection algorithm for AGV based on lidar and camera fusion
Author:
Affiliation:

1.College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China; 2.School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China; 3.AECC Sichuan Gas Turbine Research Establishment, Chengdu 610500, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在人机混合智能仓库等动态环境中,AGV通常难以精确感知随机出现的人和叉车等障碍物,为仓库的高效、安全运行带来了隐患,故提出一种基于激光雷达与图像融合的轻量化的目标检测方法(L-BEVFusion)。首先,为构建相机图像的鸟瞰视图(BEV)特征,设计了一个轻量化的特征提取网络用于获取图像的2D信息,通过引入多尺度语义特征平衡单一尺度语义特征带来的定位偏差;其次,采用基于显式监督方法采用深度真值对其进行监督,实现将图像特征投影到3D空间中;然后,分别提取图像和点云特征的预测信息,基于BEV特征融合网络,利用通道维度级联图像与点云的BEV特征,对其进行目标边界框的回归和分类预测,从而实现对人机混合仓库中动态障碍物的检测;最后,利用KITTI数据集和仓库实地采集数据对所提算法进行评估。实验结果表明,在实地采集的人机混合仓库数据集上,L-BEVFusion方法与常见的点云图像融合方法相比较在工人类和叉车类的检测精度上分别提升了3.46%和2.22%,综合平均检测精度高了2.97%,在推理速度和检测尺寸精度上也表现更佳,其中法向距离平均误差为4.02 mm,切向距离的平均绝对误差为1.75 mm,提高了AGV检测的实时性和可靠性,保障了智能仓库物流的高效安全运转,具有较高的实际应用价值。

    Abstract:

    In dynamic settings such as human-machine hybrid intelligent warehouses, Automated Guided Vehicles (AGVs) often face challenges in accurately detecting randomly appearing obstacles like pedestrians and forklifts, which can jeopardize both operational efficiency and safety. This study introduces a lightweight target detection method based on the fusion of LiDAR and image data, termed L-BEVFusion. Firstly, a lightweight feature extraction network is designed to derive 2D image information for constructing bird′s eye view (BEV) features. To reduce localization errors caused by relying on single-scale semantic information, multi-scale semantic features are incorporated. Secondly, an explicit supervision strategy utilizing depth ground truth is applied to project image features into 3D space. Predictive features from both image and point cloud data are then extracted. A BEV feature fusion network concatenates these image and point cloud BEV features along the channel dimension, enabling bounding box regression and classification for dynamic obstacle detection in human-machine collaborative warehouses. The proposed algorithm is evaluated on both the KITTI dataset and real warehouse-collected data. Experimental results show that, compared with common point cloud-image fusion methods, L-BEVFusion improves detection accuracy for workers and forklifts by 3.46% and 2.22%, respectively, on the warehouse dataset, with an overall average accuracy increase of 2.97%. It also demonstrates superior inference speed and detection size accuracy, achieving an average normal distance error of 4.02 mm and a tangential absolute error of 1.75 mm. These improvements enhance the real-time detection performance and reliability of AGVs, ensuring efficient and safe logistics operations in intelligent warehouses and highlighting strong practical value.

    参考文献
    相似文献
    引证文献
引用本文

吴斌,王世杰,卢轶,饶静,吴凌昊.基于激光雷达与相机融合的AGV动态环境目标检测算法[J].仪器仪表学报,2025,46(4):163-172

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-23
  • 出版日期:
文章二维码