基于改进比例积分微分优化算法的风机变桨控制参数优化研究
DOI:
CSTR:
作者:
作者单位:

1.四川大学电气工程学院成都610065; 2.东方电气风电股份有限公司德阳618000

作者简介:

通讯作者:

中图分类号:

TH865TK83TP273+.2

基金项目:

国家重点研发计划项目(2022YFB4201303)、国家自然科学基金项目(62403337)、四川省青年基金项目(2025ZNSFSC1510)、四川省国际科技创新合作/港澳台科技创新合作项目(2025YFHZ0157)资助


Optimization of wind turbine variable pitch control parameters based on the improved proportional integral derivative optimization algorithm
Author:
Affiliation:

1.College of Electrical Engineering, Sichuan University, Chengdu 610065, China; 2.Dongfang Electric Wind Power Co, Ltd, Deyang 618000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    变桨控制系统的高效运行是确保风机稳定功率输出、优化运行条件以及减少机械负荷疲劳的重要基础。在风机投运前,需离线完成变桨控制系统参数的精细化设计与整定。工程中,这些参数的优化与设计主要依靠风电工程师通过经验知识和仿真软件进行人工整定,该方式存在人员培训和优化时间成本高,且面临整定结果精确度低和一致性差等问题。而传统的比例积分微分优化算法在变桨控制参数智能整定过程中也存在着开发探索能力有限以及易于陷入局部最优等不足。因此,基于比例积分微分控制思想,设定收敛且随机的控制器参数,引入新的控制目标、控制误差和Levy飞行策略,提出了改进的比例积分微分优化算法。将IPIDOA与PIDOA、哈里斯鹰优化算法、鲸鱼优化算法、灰狼优化算法、粒子群优化算法、遗传优化算法在4个单峰基准函数、4个多峰基准函数和风机变桨控制参数优化实例上进行测试验证。结果表明,IPIDOA具有更快的收敛速度和更佳的参数寻优能力,同时在多类优化实例中具有更强的寻优稳定性。同时,通过计算IPIDOA的时间复杂度、对比上述各算法在风机变桨控制系统参数优化研究的收敛曲线,证明了IPIDOA具有优秀的计算效率。

    Abstract:

    The efficient operation of a variable pitch control system is an important basis to ensure the stable power output of wind turbines, optimize the operating conditions, and reduce the mechanical load fatigue. Before the operation of the wind turbine, it is necessary to complete the refined design and tuning of the pitch control system parameters offline. In engineering, these parameters mainly rely on engineers to perform manual tuning through experience knowledge and simulation software. This method has high personnel training and optimization time costs and faces low accuracy and poor consistency. However, traditional proportional-integral-derivative optimization algorithms are limited in the process of intelligent tuning of variable pitch control parameters, and it is easy to fall into local optimality. Therefore, based on the idea of proportional integral and derivative control, this article sets convergent and random controller parameter, and further introduces new control targets, control errors, and Levy flight strategies. An improved proportional-integral-derivative optimization algorithm is proposed. IPIDOA and PIDOA, Harris Hawks optimization, whale optimization algorithm, gray wolf optimizer, particle swarm optimization, and genetic algorithm are tested and verified on 4 single-peak reference functions, 4 multi-peak reference functions, and optimization examples of wind turbine pitch control parameters. The results show that IPIDOA has faster convergence speed, better parameter optimization ability, and stronger optimization stability in multi-class optimization cases. Concurrently, by calculating the time complexity of the IPIDOA and comparing the convergence curves of the algorithms in the parameter optimization research of the wind turbine pitch control system, it shows that the IPIDOA algorithm has excellent computational efficiency.

    参考文献
    相似文献
    引证文献
引用本文

兰杰,林淑,张严,王剑宇,苗强.基于改进比例积分微分优化算法的风机变桨控制参数优化研究[J].仪器仪表学报,2025,46(4):335-345

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-23
  • 出版日期:
文章二维码