基于自适应MCMC的鲁棒因子图优化组合导航算法
DOI:
CSTR:
作者:
作者单位:

东南大学仪器科学与工程学院南京210096

作者简介:

通讯作者:

中图分类号:

TH89TN96

基金项目:

国家自然科学基金(61873064)、江苏省重点研发计划(BE2022139)、无锡市科技发展资金(N20221003)项目资助


Robust factor graph optimization integrated navigation algorithm based on adaptive MCMC
Author:
Affiliation:

School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在城市峡谷环境中,GNSS多径效应与非视距现象严重,会极大影响GNSS的定位精度,进而影响INS/GNSS组合导航系统的定位效果。然而传统的INS/GNSS组合导航系统无法确定在城市峡谷环境中快速变化的GNSS量测噪声,为保证组合导航系统的抗差性能和估计精度,针对传统因子图优化算法中量测噪声协方差矩阵不准确带来状态估计精度下降的问题,提出了一种基于自适应MCMC的鲁棒因子图优化组合导航算法。首先,基于先验和后验两阶段将自适应MCMC引入因子图优化框架,在先验中通过MCMC算法将对后验概率采样转化为对先验概率和似然概率的乘积进行采样,并引入自适应策略提高采样效率,得到后验概率对应的样本集。在后验中,通过KL散度最小化近似后验和真实后验,从而精确估计GNSS时变量测噪声协方差;其次,引入新息χ2检测算法,通过构建假设检验统计量和量测异常边界值来检测和剔除粗差。所提方法在减小粗差干扰的同时能有效估计GNSS时变量测噪声。由INS/GNSS组合导航的仿真和现场实验表明,所提方法相比普通因子图优化算法和基于变分贝叶斯的鲁棒自适应因子图优化算法在水平定位均方根误差上分别减小了20.4%、11.9%和71.6%、25.2%,具有较好的鲁棒性。

    Abstract:

    In urban canyon environments, the multi-path effect and non-line-of-sight phenomenon significantly affect the positioning accuracy of GNSS, which in turn impacts the positioning performance of the INS/GNSS integrated navigation system. Traditional INS/GNSS integrated systems, however, struggle to accurately determine the rapidly changing GNSS measurement noise in such environments. To improve the robustness and estimation accuracy of the integrated navigation system, this paper proposes a robust factor graph optimization algorithm based on adaptive MCMC. The main issue addressed is the inaccuracy of measurement noise covariance in traditional factor graph optimization, which reduces state estimation accuracy. First, adaptive MCMC is introduced into the factor graph optimization framework, incorporating both prior and posterior stages. In the prior stage, the MCMC algorithm transforms posterior probability sampling into the product of prior and likelihood probability sampling, with an adaptive strategy enhancing sampling efficiency to obtain the posterior sample set. In the posterior stage, KL divergence minimizes the difference between the approximate and true posterior, allowing for accurate estimation of GNSS time-varying measurement noise covariance. Additionally, an innovation chi-square detection algorithm is used to detect and eliminate outliers by constructing hypothesis test statistics and identifying abnormal boundary values. The proposed method effectively estimates GNSS time-varying measurement noise while reducing outlier interference. Simulation and field tests of the INS/GNSS integrated navigation system show that the proposed method reduces horizontal positioning root mean square error by 20.4%, 11.9%, and 71.6%, 25.2% respectively compared to the standard factor graph optimization and the robust adaptive factor graph optimization algorithms based on variational Bayesian, respectively. The method also demonstrates improved robustness.

    参考文献
    相似文献
    引证文献
引用本文

陈熙源,崔天昊,钟雨露.基于自适应MCMC的鲁棒因子图优化组合导航算法[J].仪器仪表学报,2025,46(2):81-91

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-28
  • 出版日期:
文章二维码