基于平面特征的地面机器人雷达-惯性里程计外参标定方法
DOI:
CSTR:
作者:
作者单位:

东南大学仪器科学与工程学院南京210096

作者简介:

通讯作者:

中图分类号:

TH86

基金项目:


Ground robot LiDAR-inertial odometry calibration based on plane constraint Ren Jiawei,Xu Xiaosu
Author:
Affiliation:

School of Instrument Science and Engineering, Southeast University,Nanjing 210096, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确可靠的传感器外参标定方法是雷达-惯性融合系统实现高精度定位与导航的关键,然而,现有的标定方法大多依赖于惯性传感器三轴激励的获取,当雷达和惯性传感器安装在运动受限的地面机器人上时,现有的标定方法性能下降甚至无法标定。为了解决这一问题,提出了一种基于雷达点云平面特征的地面机器人雷达-惯性里程计外参标定方法。该方法首先利用雷达点云中的平面特征建立残差,通过最小化雷达点到平面的距离迅速将外参收敛至较小的误差范围内。随后,基于八叉树结构,结合雷达点云的空间占用信息,进一步优化外参。最后利用地面分割算法将地面约束纳入标定过程,对平面运动时Z轴方向上无法约束的误差进行修正,从而获得完整的六自由度外参。实验结果表明,该方法在两组开源数据集上的标定精度显著优于其他算法,旋转角平均误差分别降低43.73%及36.47%,位移平均误差分别降低了76.33%及41.52%。在实车验证实验中,该方法在平地、崎岖不平的地形、狭窄的通道等各种场景中均成功完成标定,进一步验证了该方法在实际环境中的可靠性与鲁棒性。在定位精度分析实验中,以本研究标定结果为初参的FAST-LIO2算法的绝对轨迹均方根误差降低了6.54%左右,证明了该方法的实用性和准确性。

    Abstract:

    Accurate and reliable sensor extrinsic calibration methods are crucial for high-precision localization and navigation in radar-inertial fusion systems. However, most existing calibration methods rely on the acquisition of triaxial excitation from inertial sensors, and their performance deteriorates or even fails when the radar and inertial sensors are installed on ground robots with restricted movement. To address this issue, a novel calibration method based on planar features in radar point clouds is proposed for radar-inertial odometry on ground robots. The method first constructs residuals using planar features in the radar point clouds and rapidly converges the extrinsic parameters to a smaller error range by minimizing the distance from radar points to the planes. Subsequently, it further optimizes the extrinsic parameters based on the octree structure, incorporating the spatial occupancy information of the radar point clouds. Finally, by integrating ground constraints through a ground segmentation algorithm, the method corrects the errors in the Z-axis direction that cannot be constrained during planar motion, thereby achieving complete 6-DOF (degrees of freedom) extrinsic parameters. Experimental results show that the proposed method significantly outperforms other algorithms in calibration accuracy on two open-source datasets, with average rotational angle errors reduced by 43.73% and 36.47%, and average translational errors reduced by 76.33% and 41.52%, respectively. In real-world vehicle validation experiments, the method successfully achieves calibration in various scenarios, including flat terrain, rugged terrain, and narrow passages, further demonstrating its reliability and robustness in practical environments. In localization accuracy analysis experiments, the absolute trajectory root mean square error of the FAST-LIO2 algorithm, initialized with the calibration results of this paper, is reduced by approximately 6.54%, evaluating the practicality and accuracy of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

任家卫,徐晓苏.基于平面特征的地面机器人雷达-惯性里程计外参标定方法[J].仪器仪表学报,2025,46(2):344-354

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-28
  • 出版日期:
文章二维码