基于计量数据超分辨重构接线错误漏电用户快速定位方法
DOI:
CSTR:
作者:
作者单位:

1.长沙理工大学电气与信息工程学院长沙410014; 2.国网湖南省电力公司长沙供电分公司长沙410004

作者简介:

通讯作者:

中图分类号:

TN912TH89

基金项目:

国家自然科学基金(51777015)、湖南省自然科学基金(15A005)项目资助


A fast location method for users with leakage current caused by wiring errors based on super-resolution reconstruction of metering data
Author:
Affiliation:

1.School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410014, China; 2.State Grid Hunan Electric Power Company Changsha Power Supply Branch, Changsha 410004, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    低压配电台区中用户零线、地线接线错误漏电故障多发,易酿成人身触电伤亡事故。目前基于多元回归分析的方法虽已应用在定位接线错误漏电故障用户,但受制于台区电流监测设备采样频率不足,存在定位时效性差的固有缺陷。于是提出基于计量数据超分辨重构的接线错误漏电用户快速定位方法,通过实现低分辨率数据的重构,突破传统方法在时间分辨率层面的技术瓶颈。首先分析接线错误漏电故障时台区剩余电流的构成,明确台区剩余电流与用户负荷电流的关联特性。继而系统评估传统多元线性回归,Lasso回归,岭回归以及弹性网络回归模型的泛化性能差异,揭示自变量共线性对参数估计稳定性的影响。进一步将时序电流数据映射为二维特征图像,采用增强型超分辨生成对抗网络(enhanced superresolution generative adversarial network, ESRGAN)模型进行超分辨重构,通过均方根误差、峰值信噪比与结构相似性指数多维度验证数据重构质量。最终使用重构的高分辨率数据建立弹性网络回归模型定位接线错误漏电用户。基于实验室仿真平台与现场实测数据的对比分析表明所提方法数据重构质量更高,模型拟合程度和接线错误漏电用户定位准确率更高,且故障定位时间与传统方法相比成倍数缩短。

    Abstract:

    In low-voltage distribution substations, users′ neutral and ground wire wiring errors often cause leakage faults, which can easily lead to electric shock casualties. Although multivariate regression analysis has been used to locate users with wiring errors and leakage faults, it is limited by the insufficient sampling frequency of the current monitoring equipment in the substation area, and has the inherent defect of poor positioning timeliness. Therefore, a fast localization method based on super-resolution reconstruction of metering data is proposed. By reconstructing low-resolution data, this approach overcomes the time-resolution limitations of traditional methods. First, the composition of the residual current in the substation area during wiring errors and leakage faults is analyzed, and the correlation characteristics between the residual current and the user load currents are clarified. Then, the generalization performance of traditional multivariate linear regression, Lasso regression, ridge regression and elastic network regression models is systematically evaluated, revealing the impact of independent variable collinearity on the stability of parameter estimation. The time series current data is further mapped into a two-dimensional feature image, and the enhanced super-resolution generative adversarial network (ESRGAN) model is used for super-resolution reconstruction. The data reconstruction quality is verified by root mean square error, peak signal-to-noise ratio and structural similarity index. Finally, the reconstructed high-resolution data was used to establish an elastic network regression model to locate users with wiring errors and leakage. The comparative analysis based on the laboratory simulation platform and the field measured data showed that the proposed method has higher data reconstruction quality, higher model fitting degree and higher accuracy in locating users with wiring errors and leakage. Moreover, the fault localization time is reduced by several multiples compared to traditional methods.

    参考文献
    相似文献
    引证文献
引用本文

魏洪吉,陈超强,苏盛,邓乐,陈凤.基于计量数据超分辨重构接线错误漏电用户快速定位方法[J].仪器仪表学报,2025,46(4):88-101

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-23
  • 出版日期:
文章二维码