微电磁力称重传感器动态温度补偿方法
DOI:
CSTR:
作者:
作者单位:

陕西省计量科学研究院西安710199

作者简介:

通讯作者:

中图分类号:

TH715.1+ 16

基金项目:

陕西省科学技术厅重点研发计划(2023-YBGY-101,2024GX-YBXM-200)项目资助


A dynamic temperature compensation method for micro electromagnetic force load cell
Author:
Affiliation:

Shaanxi Institute of Metrology Science, Xi′an 710199, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    微电磁力称重传感器机械结构的热胀冷缩、电路元器件的温漂以及永磁体磁感应强度的变化均会导致示值漂移,硬件引入漂移的作用机制、合理的温度试验与温度补偿方法都是解决温漂问题的关键所在。以量程为200 g,分度值为0.1 mg的传感器为对象,在硬件引入漂移的作用机制研究中,采用数学建模的方法分析了机械杠杆传力比、驱动电路的电压基准、采集电阻以及永磁体的温度漂移模型,得到了影响传感器温度漂移最主要因素,确定温度补偿传感器的安装位置;设计了线性升温温度试验,每隔10℃采集示值漂移并记录当前参考点试验温度,通过二次拟合得出温度漂移补偿函数;最后提出了零基准点、半量基准点按比例跟随最大秤量基准点补偿的区间温度补偿方法,使机械与电路部分的漂移量同时对零基准点和最大秤量基准点产生影响,而不会影响量程区间的长度。同时提出了动态补偿灵敏度的概念,补偿灵敏度实时按照补偿后的区间长度与分度数的比值进行更新,以解决在不同量程区间下温度补偿量与传感器分度值不对称的问题,提升补偿精度。实验结果表明,本研究方法能够实现最大秤量为200 g、分度值为0.1 mg的传感器在5℃~35℃范围内的动态温度补偿,补偿误差绝对值<0.5 mg,增强了传感器在温度波动较大环境中的适应性。

    Abstract:

    The thermal expansion and contraction of the mechanical structure, temperature drift of circuit components, and variations in the magnetic induction intensity of the permanent magnet all contribute to indication drift in micro electromagnetic force weighing sensors. Investigating the mechanisms of hardware-induced drift, conducting appropriate temperature tests, and implementing effective temperature compensation methods are crucial for mitigating temperature-related drift issues. For a sensor with a range of 200 g and a resolution of 0.1 mg, this study employs mathematical modeling to analyze key factors including the mechanical lever force transmission ratio, voltage reference of the driving circuit, acquisition resistor, and the temperature drift model of the permanent magnet. This analysis identifies the primary contributors to temperature drift and determines the optimal installation position for the temperature-compensated sensor. A linear temperature rise test is conducted, collecting and recording indication drift data at each 10℃ interval. Quadratic fitting is then applied to derive the temperature drift compensation function. The study proposes an interval temperature compensation method where the zero reference point and half-scale reference point proportionally follow the maximum scale reference point. This approach compensates for both mechanical and circuit drifts without altering the length of the scale range interval. Additionally, the concept of dynamic compensation sensitivity is introduced, updating the compensation sensitivity in real time based on the ratio of the compensated interval length to the graduation number. This addresses asymmetry issues in temperature compensation amounts across different scale intervals and enhances compensation accuracy. Experimental results show that the proposed method achieves dynamic temperature compensation for a 200 g sensor with a resolution of 0.1 mg within the 5℃~35℃ range, with a compensation error absolute value less than 0.5 mg, thereby improving the sensor′s adaptability in environments with significant temperature fluctuations.

    参考文献
    相似文献
    引证文献
引用本文

王喜阳,肖福礼,李毅,刘文佳,程云飞.微电磁力称重传感器动态温度补偿方法[J].仪器仪表学报,2025,46(2):335-343

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-28
  • 出版日期:
文章二维码