基于特征表征与学习反馈的动态带钢缺陷样本筛选方法
DOI:
CSTR:
作者:
作者单位:

沈阳工业大学信息科学与工程学院沈阳110870

作者简介:

通讯作者:

中图分类号:

TP391.41TH165

基金项目:

辽宁省教育厅高等学校基本科研面上项目(LJ212410142048)资助


A dynamic sample selection method for steel strip defects based on feature representation and learning feedback
Author:
Affiliation:

College of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    带钢表面缺陷检测是保证钢铁产品质量的关键环节,实现高效准确的缺陷检测对保障产品性能具有重要意义。近年来,深度学习方法在缺陷检测领域进展显著,但在实际应用中仍面临两个问题:一方面,由于工业生产追求高良品率,导致缺陷样本获取受限,且样本标注耗时费力;另一方面,采集的样本中可能存在冗余特征,影响模型训练效率和泛化性能。针对特征冗余问题,提出一种基于特征表征与学习反馈机制的动态样本筛选方法。首先构建包含几何形态、灰度分布及方向特征等多维特征量化模型,系统表征缺陷特征。随后,设计基于特征表征的样本筛选策略,结合特征聚类快速筛选少量具有多样性和代表性的训练样本。最后,设计基于置信度评估的动态优化策略,通过模型的学习反馈获取关键补充样本,提升特征覆盖范围,实现训练样本的自适应优化。NEU-DET数据集的实验结果表明,该方法在将训练样本数量减少52%的情况下,平均检测精度达到76.99%,与完整数据集基本持平。同时,每轮训练迭代时间减少62%,降低了计算开销,验证了方法在样本筛选与检测性能之间的有效平衡。此外,在多种主流目标检测模型上的验证结果表明,该方法在不同检测架构下均能有效提升效率并保持性能,展现出良好的适用性。

    Abstract:

    Surface defect detection of steel strips is crucial for ensuring product quality in steel manufacturing. The achievement of efficient and accurate detection is significant for product performance. While deep learning methods have made significant progress in defect detection, two challenges persist in practical applications: First, due to the pursuit of high yield rates in industrial production, defect samples are limited and sample annotation is time-consuming. Secondly, the collected samples may contain redundant features, affecting model training efficiency and generalization performance. To address feature redundancy, a dynamic sample selection method based on feature representation and learning feedback is proposed. Initially, a multi-dimensional feature quantification model incorporating geometric morphology, grayscale distribution, and directional features is formulated to characterize defect features. Subsequently, a feature representationbased sample selection strategy is designed to select diverse and representative training samples through feature clustering. Finally, a confidence-based dynamic optimization strategy is proposed to obtain supplementary samples through learning feedback, achieving adaptive optimization. Experimental results on the NEU-DET dataset show that the method achieves a mean average precision of 76.99% while reducing the training sample size by 52%. It is comparable with using the complete dataset and decreases training iteration time by 62%. Evaluation of various detection models shows that the method effectively improves efficiency while maintaining performance across different architectures.

    参考文献
    相似文献
    引证文献
引用本文

苑玮琦,刘文滔,李绍丽.基于特征表征与学习反馈的动态带钢缺陷样本筛选方法[J].仪器仪表学报,2025,46(4):240-250

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-23
  • 出版日期:
文章二维码