BG-YOLO:复杂大视场下低慢小无人机目标检测方法
DOI:
CSTR:
作者:
作者单位:

国防科技大学智能科学学院长沙410072

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:


BG-YOLO: A low-altitude slow-moving small UAV targets detection method in complex large field of view
Author:
Affiliation:

College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410072, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有无人机目标检测模型在体积、计算资源需求以及小目标检测效果方面的不足,提出了一种改进的无人机目标检测算法BGYOLO。该算法基于YOLOv8,通过在高分辨率特征层添加检测头,有效减少了图像下采样过程中的信息丢失,显著提升了模型对小目标的检测能力。同时,引入Biformer注意力机可以制精准捕捉图像的远程依赖关系,增强模型对不同尺度目标的感知能力。此外,NWD损失函数的引入解决了传统损失函数在小目标检测中对位置偏差敏感的问题,显著提高了模型的鲁棒性。基于GhostNetV2的模型轻量化则通过替换传统卷积模块,在减少模型参数和计算量的同时,保持了模型的检测精度。实验结果表明,BG-YOLO在Det-Fly数据集上相比YOLOv8的mAP@0.5提高了10.3%,参数量减少了33.18%,而与YOLOv9相比提高了7.9%。此外,该算法在自采集数据集上也表现出色,对天空、山地、建筑等不同场景的低慢小目标分别实现了96.2%、88.1%和86.2%的平均精度,检测速度分别为150.36、128.21、112.53 fps,实现了高检测精度和高检测速度的要求。综上所述,BG-YOLO通过检测头设计、注意力机制引入、损失函数改进以及模型轻量化,显著提升了对低慢小无人机目标的检测精度和实时性,具有广阔的应用前景。

    Abstract:

    This article proposes an improved UAV target detection algorithm, BG-YOLO, to address the limitations of existing UAV detection models in terms of model size, computational resource requirements, and the detection performance of small targets. Based on YOLOv8, BG-YOLO adds detection heads to the high-resolution feature layers, effectively reducing information loss during image downsampling and significantly enhancing the model′s ability to detect small targets. The introduction of the Biformer attention mechanism enables precise capture of long-range dependencies in images, thereby strengthening the model′s perception of targets at different scales. Additionally, the incorporation of the NWD loss function overcomes the issue of traditional loss functions being sensitive to positional deviations in small target detection, thereby significantly improving the model′s robustness. The model′s lightweighting based on GhostNetV2 replaces traditional convolutional modules, reducing model parameters and computational load while maintaining detection accuracy. Experimental results show that BG-YOLO achieves a 10.3% improvement in mAP@0.5 on the Det-Fly dataset compared to YOLOv8, with a 33.18% reduction in model parameters, and a 7.9% improvement compared to YOLOv9. Moreover, on the self-collected dataset, BG-YOLO demonstrates excellent performance in detecting low, slow, and small targets in various scenarios, including sky, mountain, and urban backgrounds, achieving average precisions of 96.2%, 88.1% and 86.2%, respectively, with detection speeds of 150.36, 128.21 and 112.53 fps. These results meet the real-time requirements of high detection accuracy and speed. In summary, BG-YOLO significantly enhances the detection accuracy and real-time performance for low, slow, and small UAV targets through the design of detection heads, incorporation of attention mechanisms, refinement of the loss function, and model lightweighting, thereby offering broad application prospects.

    参考文献
    相似文献
    引证文献
引用本文

王迎龙,孙备,丁冰,卜德森,孙晓永. BG-YOLO:复杂大视场下低慢小无人机目标检测方法[J].仪器仪表学报,2025,46(2):255-266

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-28
  • 出版日期:
文章二维码