航空复合材料板非接触空气耦合超声导波多损伤快速成像方法
DOI:
CSTR:
作者:
作者单位:

南昌航空大学仪器科学与光电工程学院南昌330063

作者简介:

通讯作者:

中图分类号:

TH70

基金项目:

国家自然科学基金(52365013,52305580)、江西省自然科学基金(20232BAB204058,20224BAB214052)、江西省重点研发计划(20212BBE51006)项目资助


Multi-damage rapid imaging method of non-contact air-coupled ultrasonic guided wave for aircraft composite plates
Author:
Affiliation:

School of Instrument Science and Optoelectronic Engineering, Nanchang Hangkong University, Nanchang 330063, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    航空复合材料作为飞机轻量化的关键技术,在航空领域应用十分广泛。然而,在大型化、复杂化、智能化发展新形势下,复合材料非接触多损伤快速检测技术亟需突破。基于此,提出了基于希尔伯特边际谱和空气耦合超声导波复合路径交叉成像的复合材料多损伤快速成像方法。首先,通过数值模拟分析复合材料板中导波的传播特性,确定超声探头最佳入射角度以及复合材料板中导波的传播模态;其次,为解决多损伤成像易出现伪像的问题,利用空气耦合超声导波进行双正交方向扫描,采集导波沿复合材料纤维铺层方向0°、45°、90°及135°传播时的信号;接着,利用完全集成经验模态分解与自适应噪声算法并结合能量熵对原始信号的本征模态函数进行优选,以提取主要的信号分量,降低噪声的影响,然后,利用希尔伯特边际谱计算优选后信号的能量,确定损伤因子;最后,将损伤因子数组扩充为矩阵,并按正交角度分为两组,组内损伤因子矩阵相加,再组间相乘得到最终损伤图像。试验结果表明,单一损伤最大定位误差为2.3 mm,多损伤定位误差为12.5 mm,同时相较于逐点C扫描效率提高168.9%。所提方法能够有效提升大尺寸试样的检测效率和多损伤定位精度。

    Abstract:

    Aviation composite materials, as the key technology of aircraft lightweighting, are widely used in the field of aviation. However, under the new situation of large-scale, complex and intelligent development, there is an urgent need for breakthroughs in non-contact multi-damage rapid detection technology for composite materials. Based on this, this paper proposes a fast multi-damage imaging method for composite materials based on Hilbert marginal spectrum and air-coupled ultrasonic guided wave composite path cross-imaging. First, the propagation characteristics of the guided waves in the composite plate are analyzed through numerical simulation to determine the optimal incidence angle of the ultrasonic probe and the propagation modes of the guided waves in the composite plate; second, in order to solve the problem of artifacts that may easily appear in the multi-damage imaging, the air-coupled ultrasonic guided waves are used for scanning in double orthogonal directions, and the signals of the guided waves are captured when they propagate along the direction of composite fiber layups at 0°,45°,90°and 135°; Then, the fully integrated empirical mode decomposition and adaptive noise algorithm combined with energy entropy are used to optimize the eigenmode function of the original signal in order to extract the main signal components and reduce the influence of noise, and then the Hilbert marginal spectrum is used to compute the energy of the optimized signal and determine the damage factor; finally, the array of the damage factor is expanded into a matrix and divided into two groups according to the orthogonal angle, and the matrix of the damage factor within a group the damage factor array is expanded into a matrix and divided into two groups according to the orthogonal angle, and the damage factor matrices within the groups are added together and then multiplied between the groups to obtain the final damage image. The experimental results show that the maximum localization error of single damage is 2.3 mm, and the localization error of multi-damage is 12.5 mm, and the efficiency of C-scanning is improved by 168.9% compared with point-by-point C-scanning. The method proposed in this paper can effectively improve the inspection efficiency and multi-damage localization accuracy of large-size specimens.

    参考文献
    相似文献
    引证文献
引用本文

刘远,彭炜亮,卢超,王杰林,郭双林.航空复合材料板非接触空气耦合超声导波多损伤快速成像方法[J].仪器仪表学报,2025,46(2):103-115

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-28
  • 出版日期:
文章二维码