融合互信息和多特征约束的激光雷达与相机外参标定方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH74

基金项目:

国家自然科学基金项目(52274161)、工信部产业基础再造和制造业高质量发展专项(TC220A04W-1-167Z)资助


Extrinsic calibration of LiDAR and camera through mutual information integrated multi-feature constraints
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    外参标定是激光雷达与相机数据融合的关键前提,但目前的标定方法仍存在诸多不足,如依赖先验条件、特征约束单一 和标定精度不高等问题。 为此,提出一种融合互信息与多特征约束的两阶段外参自动标定方法,该方法有机结合了基于互信息 和基于多特征约束两种标定方法的优点,可由粗到精自动实现外参精准标定。 首先,第 1 阶段为基于互信息的外参粗标定,即 在无初值、阈值等先验条件情况下利用激光雷达反射率与相机灰度值之间的关联性,通过构建最大化模型,在互信息最大时采 用自适应梯度最值算法求解出外参的初值,从而摆脱对先验条件的依赖。 其次,第 2 阶段为融合多特征约束的外参精标定,即 利用激光雷达和相机获取的点-线、点-面、线-面等多种约束来优化第 1 阶段获得的外参,并使用 ICP 算法最小化点云 3D 几何 特征与图像 2D 几何特征之间的重投影误差,以获得外参的最优值。 最后,基于自制的镂空圆形标定板(同时具有点线面特征) 在较为复杂的室内外环境下进行了外参标定试验,结果表明所提出的标定方法可以在没有初值的情况下,能自动计算出的激光 雷达与相机外参,同时具有较高的精度和稳定性。

    Abstract:

    Extrinsic calibration is a key prerequisite for the data fusion of LiDAR and camera. However, the current calibration methods still face several challenges such as dependence on prior conditions, single feature constraints, and low calibration accuracy. To address these issues, this paper proposes a two-stage automatic extrinsic calibration method that integrates the mutual information and multifeature constraints. It combines the advantages of mutual information and multi-feature constraints methods. Firstly, by constructing a mutual information maximization model, the first stage is the coarse extrinsic calibration based on mutual information. This stage obtains the initial extrinsic calibration parameters according to the correlation between LiDAR reflectance and camera grayscale values, not depending on the initial values, set values, or any other prior conditions. Additionally, we design an adaptive gradient algorithm to refine the initial values of the extrinsic parameters. Secondly, the following stage involves the fine calibration of extrinsic parameters with multi-feature constraints, which uses the multiply constraints including the point-to-line, point-to-plane and line-to-plane, to optimize the initial extrinsic parameters obtained from the first stage. Also, the iterative closest point (ICP) algorithm is utilized to minimize the reprojection error between the 3D geometric features of the point cloud and the 2D geometric features of the image. Finally, we conducted the extrinsic calibration experiments in both indoor and outdoor challenging environments using a special-designed hollow circular calibration board, which simultaneously possesses the multi-feature constraints: point, line, and plane. The experimental results proved that the proposed calibration method can automatically and precisely achieve the extrinsic parameters of LiDAR and camera not depending on initial values. Additionally, the method exhibits higher accuracy and stability.

    参考文献
    相似文献
    引证文献
引用本文

刘万里,刘 扬,张学亮.融合互信息和多特征约束的激光雷达与相机外参标定方法[J].仪器仪表学报,2025,46(1):29-41

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-08
  • 出版日期:
文章二维码