基于改进遗传粒子群算法的无人机路径规划
DOI:
CSTR:
作者:
作者单位:

哈尔滨理工大学测控技术与通信工程学院哈尔滨150080

作者简介:

通讯作者:

中图分类号:

TH166TP242

基金项目:

国家自然科学基金(62205091)项目资助


Path planning for UAV based on improved hybrid genetic particle swarm algorithm
Author:
Affiliation:

School of Measurement and Control Technology and Communication Engineering, Harbin University of Science and Technology, Harbin 150080, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人机高效飞行路径规划问题,提出一种改进遗传粒子群算法(IHGPA)。该算法在粒子群算法的基础上,融合多种策略,改善了收敛效果和解的质量。首先,为提升全局寻优能力,IHGPA算法引入分区优化策略,通过构建动态参数调整机制,优化了粒子速度与位置更新方式。其次,改进遗传算法的选择、交叉、变异算子进一步强化寻优能力,其中选择阶段采用轮盘赌方法与模拟退火算法优化并保留精英个体,交叉阶段结合概率算术交叉与改进模拟二进制交叉增加算法的种群多样性,变异阶段融合莱维飞行长步长扰动与多项式变异避免局部最优。最后,通过划分搜索区域交换最优解信息,并设置收敛检测机制,当适应度值小于设定阈值时对粒子进行二次优化,防止算法过早收敛。实验结果表明,在障碍物分散的环境1中,IHGPA算法的最佳适应度值相比遗传算法、粒子群算法、狼群算法、人工蜂群算法、蜣螂优化算法分别减少78.130%、46.190%、53.990%、41.124%、67.376%;在障碍物密集的环境2中,IHGPA算法的最佳适应度值相比上述算法分别减少89.990%、75.088%、76.503%、71.048%、81.061%。IHGPA算法能有效规划出安全且平滑的最佳飞行路径,并经多次实验验证展现出较好的稳定性和可靠性。

    Abstract:

    To tackle the challenge of efficient flight path planning for unmanned aerial vehicle (UAV), an enhanced hybrid genetic-particle swarm algorithm (IHGPA) is proposed. This algorithm, based on particle swarm optimization (PSO), integrates multiple strategies to enhance both convergence performance and solution quality. Firstly, to improve global optimization, a partition optimization strategy is introduced into the IHGPA, and a dynamic parameter adjustment mechanism is employed to optimize the particle velocity and position update methods. Secondly, the genetic algorithm’s selection, crossover, and mutation operators are refined to further boost optimization capabilities. During selection, a combination of the roulette wheel method and simulated annealing algorithm is used to preserve elite individuals. In the crossover phase, probabilistic arithmetic crossover and an improved simulation binary crossover are integrated to increase population diversity. For mutation, Lévy flight long-step perturbation and polynomial mutation are fused to prevent premature convergence. Finally, by drviding the search area to exchange optimal solution in formation and implementing a convergence detection mechanism is implemented, where particles undergo secondary optimization if their fitness value falls below a predefined threshold, preventing the algorithm from getting trapped in local optima. Experimental results show that, in environment 1 with scattered obstacles, the best fitness value of the IHGPA undperforms genetic algorithm, particle swarm optimization, wolf pack algorithm, artificial bee colony algorithm, and dung beetle optimizer by 78.130%, 46.190%, 53.990%, 41.124%, and 67.376%, respectively. In environment 2, with dense obstacles, IHGPA′s best fitness value is reduced by 89.990%, 75.088%, 76.503%, 71.048%, and 81.061%, respectively. The IHGPA effectively generates safe, smooth, and optimal flight paths while demonstrating outstanding stability and reliability across multiple verification trials.

    参考文献
    相似文献
    引证文献
引用本文

武晓雯,郭孟营,胡阿建,吴卿.基于改进遗传粒子群算法的无人机路径规划[J].仪器仪表学报,2025,46(4):315-325

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-23
  • 出版日期:
文章二维码