无人机弱光条件下多模态融合目标检测方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391. 4 TH865

基金项目:

湖南省研究生科研创新(QL20230009)项目资助


Multimodal fusion object detection method for UAVs under low light conditions
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    弱光条件下,图像亮度低、对比度弱、成像质量差,且由于机载算力的制约,算法部署应用难以落地,极大地影响了无人 机对目标的识别定位精度。 因此,无人机弱光照条件下目标检测方法具有重要的理论意义和应用价值。 针对此问题,提出了耦 合光照条件和对比度的多尺度差分注意力融合检测方法。 首先,设计了信息感知引导的多尺度差分注意力融合检测网络,通过 信息感知模块计算图像的光照信息和目标的局部对比度,来引导多尺度差分注意力模块对可见光和红外图像的模态内和模态 间特征进行深度交叉融合,以提升弱光条件下无人机对地目标的检测识别精度;其次,基于多模吊舱、边缘计算模块和自组网电 台构建了一套旋翼无人机多模目标检测系统,针对可见光和红外数据,在通信交互上具有规范的传输协议和统一的任务管理机 制,可实现同步解码;随后,设计了对比和消融实验,实验结果显示该方法在典型暗光照数据集 LLVIP 上 mAP 达到 69. 2% ,较改 进前提升 3. 9% ,并优于典型的双流网络 LRAF-Net。 最后,在机载端对本文算法进行了轻量化部署和验证,结果表明在真实弱 光场景下该算法能显著提升无人机对目标的检测能力,且平均运行效率可达 21. 2 FPS,满足机载端应用需求。

    Abstract:

    Under low light conditions, factors such as low image brightness, weak contrast, poor imaging quality and the constraints of on-board arithmetic greatly affect the detection accuracy from the UAV′s point of view. Therefore, researches based on object detection under low light conditions in UAVs is of great significance. Aiming at this problem, this paper proposes a multiscale differential attention fusion detection method with coupled illumination conditions and contrast. First, an information-aware module is designed to guide the multiscale differential attention module. This module deeply fuses the intra- and inter-modal features of visible and infrared images through calculating the light information and local contrast, thereby enhancing the recognition ability under low light conditions. Second, a rotary-wing UAV multimodal target detection system is constructed based on multimodal pods, edge computing modules and selforganizing network radios. This system has a standardized transmission protocol and a unified task management mechanism for communication interaction and realizes synchronous decoding. Subsequently, comparison and ablation experiments are designed, and the results show that the mAP of this method on the LLVIP is 69. 2% , which is 3. 9% better than before the improvement, and outperforms LRAF-Net. Finally, the proposed algorithm is validated at the airborne end of USVs, demonstrating that it can significantly improve the detection capability of UAVs on targets under low light conditions. The average operation efficiency can reach 21. 2 FPS, which meets the requirements of airborne applications.

    参考文献
    相似文献
    引证文献
引用本文

郭润泽,孙 备,孙晓永,卜德森,苏绍璟.无人机弱光条件下多模态融合目标检测方法[J].仪器仪表学报,2025,46(1):338-350

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-08
  • 出版日期:
文章二维码