稀疏数据驱动的涡轮叶片表面裂纹长度提取方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH741

基金项目:

黑龙江省自然科学基金(LH2022E085)、国家自然科学基金(51975169)项目资助


A sparse data-driven method for extracting surface crack length of turbine blade
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    航发涡轮叶片裂纹的长度测量是裂纹危险等级评判的基础和修复的前提。 针对涡轮叶片表面裂纹形状不规则、目标 小、数据集样本稀少和裂纹成像角度失真等问题,提出一种稀疏数据驱动的涡轮叶片表面裂纹长度提取方法。 首先,为提升 Unet 模型在处理稀疏数据时的精度,采用 GeLu 函数与 Vgg16 网络结合的方法提取裂纹特征,将输出作为 Unet 网络解码部分的 输入,保证模型匹配的前提下,在随机初始化权重中引入预训练权重,并在跳跃连接层中引入高效金字塔压缩注意力模块,增强 模型在复杂背景下对裂纹特征的聚焦能力。 然后,为了得到裂纹的单位像素特征曲线,在精分割后提出使用八邻域骨架化保留 裂纹的主干特征结构。 最后,深入分析了相机成像原理,讨论了叶片弦线角和相机自身参数对裂纹长度的测量影响,采用张正 友标定法求解相机内部参数,建立了像素尺寸与实际尺寸转换模型。 实验结果表明,与 X 光测量相比,该方法在测量距离为 100~ 300 mm 时,得到的裂纹长度最大误差为 6. 8% ,证明该方法在测量涡轮叶片表面裂纹长度中对 X 光检测技术具有可替代 性;与原算法相比,改进的算法在针对稀疏数据检测时精度显著提高,平均交并比提升了 7. 14% 。 所提出的涡轮叶片裂纹长度 提取方法,为叶片质量评估及后续修复提供了理论基础和数据支持。

    Abstract:

    The measurement of crack length is fundamental to the evaluation of crack risk and a prerequisite for crack repair. Aiming at the problems of irregular shapes, small target, sparse data sets and distortions of crack imaging angle, a sparse data driven method was proposed to extract the surface crack length of turbine blades. Firstly, to enhance the Unet model′s precision in handling sparse data, we employ a combination of the GeLu function with the Vgg16 network for feature extraction. The extracted features then serve as inputs for the Unet network′s decoding process. To ensure model compatibility, we incorporate pre-trained weights into the randomly initialized weights and integrate an efficient pyramid compression attention module into the skip connection layer. This approach significantly improves the model′s capability to focus on crack characteristics amidst complex backgrounds. Then, in order to get the unit pixel characteristic curve of the crack, after the fine segmentation, a skeleton structure with eight neighborhood is proposed to preserve the crack backbone characteristic structure. Finally, through an in-depth analysis of camera imaging principles, we discuss the impact of blade chord angles and camera parameters on crack length measurements, establishing a conversion model between pixel size and actual dimensions. Experimental results indicate that when the measuring distance ranges from 100 to 300 mm, the maximum error in crack length is 6. 8% . Compared to X-ray measurements, our method proves to be a viable alternative for measuring the surface crack length of turbine blades. Moreover, the enhanced algorithm demonstrates greater accuracy than the original algorithm in detecting sparse data, with an average cross-over ratio improvement of 7. 14% . The proposed method offers a theoretical foundation and data support for evaluating blade quality and guiding subsequent repairs.

    参考文献
    相似文献
    引证文献
引用本文

李茂月,雷金超,张成龙,刘泽隆.稀疏数据驱动的涡轮叶片表面裂纹长度提取方法[J].仪器仪表学报,2025,46(1):157-169

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-08
  • 出版日期:
文章二维码