基于回声状态网络的风电机组运行状态监测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH17

基金项目:

国家重点研发计划(2022YFE0198900)、国家自然科学基金(62473336)、浙江省自然科学基金(LZ25F030004)项目资助


Condition monitoring of wind turbine based on echo state networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    “双碳”目标引领下,风能作为一种清洁可再生能源得到了广泛的利用。 风电机组作为将风能转化为电能的重要装备, 累计装机容量持续增长。 然而,风电机组工作环境恶劣,运行工况多变,故障频发。 为保障风电机组安全高效运行,亟需故障诊 断与智能运维技术。 针对风电机组运行工况复杂多变以及循环神经网络在时间序列学习过程中存在梯度消失和爆炸等问题, 提出一种融合运行工况识别与回声状态网络的风电机组运行状态监测方法。 首先,采用最大互信息系数对数据采集与监控系 统(SCADA)采集的多维数据进行特征选择,筛选出与风电机组运行状态相关性高的特征。 其次,利用 K-means 聚类算法构建机 组的工况识别模型,对不同运行工况进行有效划分。 然后,利用差分进化算法优化不同工况下的回声状态网络模型,增强其对 复杂运行工况的适应能力,以此开展不同工况下风电机组有功功率预测。 继而,结合功率预测残差分析确定相应的健康阈值, 用于评判机组运行状态。 最后,通过两个实际风电机组的案例分析表明,所提方法可有效监测机组的运行状态,当故障发生时, 比 SCADA 系统提前发现机组运行状态的异常,可实现故障的早期预警。

    Abstract:

    Under the guidance of the “ dual-carbon” goals, wind energy, as a clean and renewable energy source, has been widely harnessed. Wind turbines (WTs), which are crucial for converting wind energy into electrical energy, have seen a growing cumulative installed capacity. However, WTs operate in harsh environments with highly variable conditions, leading to frequent failures. To ensure their safe and efficient operation, fault diagnosis and intelligent maintenance technologies are urgently needed. Aiming to address the complex and variable operating conditions of WTs and the issues of gradient disappearance and explosion in recurrent neural networks during time-series learning, this paper proposes a condition monitoring method for WTs that integrates operating condition recognition with echo state networks (ESNs). First, the maximum mutual information coefficient is employed to select features from the supervisory control and data acquisition (SCADA) system data, prioritizing those with high relevance to the operational status of WTs. Second, the K-means clustering algorithm is utilized to construct a model for effective classification of different operating conditions. Subsequently, ESN models are optimized under various conditions using the differential evolution algorithm to enhance their adaptability to complex operating conditions, enabling active power prediction of WTs under different conditions. Then, by analyzing the residuals of power prediction, corresponding health thresholds are determined to assess the operating conditions of WTs. Finally, case studies of two actual WTs demonstrate that the proposed method can effectively monitor the operating status of WTs. It can detect abnormal operating conditions earlier than the SCADA system when faults occur, thus realizing early fault warning.

    参考文献
    相似文献
    引证文献
引用本文

金晓航,喻轩昂,关汉林.基于回声状态网络的风电机组运行状态监测[J].仪器仪表学报,2025,46(1):258-269

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-08
  • 出版日期:
文章二维码