基于联合卷积变分自编码器和预测器的 UWB 定位算法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH70

基金项目:

国家自然科学基金(52205249)项目资助


UWB location algorithm based on joint convolutional variational auto-encoder and predictor
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    某室内三线自动驾驶轨道交通系统使用了超宽带(UWB)定位系统,车辆的高精度定位是提高其运行可靠性和调度效 率的关键技术。 基于 UWB 定位精度的分析,提出了一种基于联合卷积变分自编码器和预测器(VAE-CNN)的非视距鉴别、测距 误差补偿与神经网络定位误差补偿的三步 UWB 定位算法。 首先,采集标签与基站的测距误差和信道脉冲响应(CIR)数据,训 练 VAE-CNN 模型,根据原始 CIR 和重建 CIR 的可信度阈值剔除非视距测距值。 其次,根据预测器的预测误差补偿原始测距 值,使用最小二乘法计算坐标和该坐标相对于各个基站坐标的方向余弦,训练神经网络用于拟合定位误差与方向余弦的关系。 在已公开的包含视距和非视距的 UWB 测距值和 CIR 数据集上,验证了 VAE-CNN 模型的非视距鉴别能力,评估了基于 VAECNN 模型的非视距鉴别和测距误差补偿对定位精度的提升效果;在不同测距方差下,基于车辆模拟运行轨迹,评估了定位误差 补偿神经网络提高定位精度的效果。 搭建了 UWB 定位系统,验证了动态定位中三步 UWB 定位算法的实际效果。 结果表明, 动态定位中,在完全视距环境中,算法的平均定位误差为 28. 68 mm,均方根定位误差为 16. 67 mm,最大定位误差为 76. 68 mm; 存在非视距的环境中,算法的平均定位误差为 38. 73 mm,均方根定位误差为 20. 61 mm,最大定位误差为 116. 47 mm。 由此可 知,所提出的三步 UWB 定位算法具有精度高、成本低和稳定性好的优点,能满足所涉及的室内轨道交通的定位需求。

    Abstract:

    UWB positioning system was used in an indoor three-line autonomous driving rail transit system, where high-precision positioning of vehicles was a key technology to improve operational reliability and scheduling efficiency. A three-step UWB location algorithm including non-line-of-sight (NLOS) discrimination, ranging error compensation and neural network location error compensation was proposed using a joint convolutional variational auto-encoder and predictor (VAE-CNN), based on the analysis of UWB location accuracy. Firstly, the ranging error and channel impulse response (CIR) data between the tag and the base stations were collected and used to train the VAE-CNN model. The non-line-of-sight ranging values were eliminated according to the confidence threshold of the original and reconstructed CIR. Secondly, the original ranging values were compensated by the prediction errors of the predictor. The coordinates and the direction cosine of the coordinates with respect to the coordinates of each base station were calculated, which were used to train the neural network to fit the relationship between the localization error and the direction cosine. The NLOS discrimination capability of the VAE-CNN model was validated on a publicly available UWB ranging and CIR dataset, which includes both line-of-sight (LOS) and NLOS measurements. The effectiveness of NLOS discrimination and ranging error compensation based on the VAE-CNN model on improving positioning accuracy was also evaluated. The effect of positioning error compensation neural network on improving positioning accuracy was evaluated based on the simulated vehicle trajectories under different ranging variances. An UWB localization system was built to verify the practical performance of the three-step UWB localization algorithm in dynamic localization. The results show that in dynamic localization, in full line-of-sight environment, the algorithm achieved an average localization error of 28. 68 mm, a root-mean-square localization error of 16. 67 mm, and a maximum localization error of 76. 68 mm. In the presence of non-line-of-sight environment, the average localization error is 38. 73 mm, the root mean square localization error is 20. 61 mm, and the maximum localization error is 116. 47 mm. It can be seen that the three-step UWB location algorithm offers high accuracy, low cost, and excellent stability, meeting the positioning requirements of indoor rail transit systems. Keywords:three-line indoor rail transit; UWB location; convolutional variati

    参考文献
    相似文献
    引证文献
引用本文

古玉锋,李 真,高世椿,黎程山.基于联合卷积变分自编码器和预测器的 UWB 定位算法[J].仪器仪表学报,2025,46(1):182-192

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-08
  • 出版日期:
文章二维码